A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Preparation of OTS- Coated Glass Slides and Optical Cells
2.3. Detection of Malathion
3. Results and Discussion
3.1. Optimization of the Detection Conditions
3.2. Specificity of the Developed LC Biosensor
3.3. Analytical Performance of the LC-Based Sensing Method
3.4. Real Sample Analysis with the Proposed LC Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tankiewicz, M.; Fenik, J.; Biziuk, M. Determination of organophosphorus and organonitrogen pesticides in water samples. Trends Anal. Chem. 2010, 29, 1050–1063. [Google Scholar] [CrossRef]
- Eddleston, M.; Worek, F.; Eyer, P.; Thiermann, H.; Von Meyer, L.; Jeganathan, K.; Sheriff, M.H.R.; Dawson, A.H.; Buckley, N.A. Poisoning with the S-Alkyl organophosphorus insecticides profenofos and prothiofos. Q. J. Med. 2009, 102, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Li, X.; Dai, Z.; Liu, S.; Tang, Z. Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers. J. Mater. Chem. 2011, 21, 16955–16962. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; Wang, L.; Zhang, H. A simple colorimetric probe based on anti-aggregation of AuNPs for rapid and sensitive detection of malathion in environmental samples. Anal. Bioanal. Chem. 2019, 411, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Bolat, G.; Abaci, S. Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite. Sensors 2018, 18, 773. [Google Scholar] [CrossRef] [Green Version]
- Casida, J. Pest toxicology: The primary mechanisms of pesticide action. Chem. Res. Toxicol. 2009, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.P.; Hodgson, E. Metabolism of insecticides by mixed function oxidase systems. Pharmacol. Ther. 1980, 8, 379–475. [Google Scholar] [CrossRef]
- Sultatos, L.G. Mammalian toxicology of organophosphorous pesticides. J. Toxicol. Environ. Health 1994, 43, 271–289. [Google Scholar] [CrossRef]
- Quinn, D.M. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 1987, 87, 955–979. [Google Scholar] [CrossRef]
- Qian, S.; Lin, H. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Anal. Chem. 2015, 87, 5395–5400. [Google Scholar] [CrossRef]
- Berijani, S.; Assadi, Y.; Anbia, M.; Hosseini, M.R.M.; Aghaee, E. Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J. Chromatogr. A. 2006, 1123, 1–9. [Google Scholar] [CrossRef]
- Brito, N.M.; Navickiene, S.; Polese, L.; Jardim, E.F.G.; Abakerli, R.B.; Ribeiro, M.L. Determination of pesticide residues in coconut water by liquid–liquid extraction and gas chromatography with electron capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. A. 2002, 957, 201–209. [Google Scholar]
- Leandro, C.C.; Hancock, P.; Fussell, R.J.; Keely, B.J. Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography for the determination of priority pesticides in baby foods by tandem quadrupole mass spectrometry. J. Chromatogr. A. 2006, 1103, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Caldas, S.S.; Rombaldi, C.; de Oliveira Arias, J.L.; Marube, L.C.; Primel, E.G. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid–liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 2016, 146, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Tuzimski, T. Use of thin-layer chromatography in combination with diode-array scanning densitometry for identification of fenitrothion in apples. JPC-J. Planar Chromatogr.-Mod. TLC 2006, 18, 419–422. [Google Scholar] [CrossRef]
- Nie, Y.; Teng, Y.; Li, P.; Liu, W.; Shi, Q.; Zhang, Y. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2018, 191, 271–276. [Google Scholar] [CrossRef]
- Gothwal, A.; Beniwal, P.; Dhull, V.; Hooda, V. Preparation of electrochemical biosensor for detection of organophosphorus pesticides. Int. J. Anal. Chem. 2014. [Google Scholar] [CrossRef]
- Bala, R.; Dhingra, S.; Kumar, M.; Bansal, K.; Mittal, S.; Sharma, R.K.; Wangoo, N. Detection of organophosphorus pesticide-Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem. Eng. J. 2017, 311, 111–116. [Google Scholar] [CrossRef]
- Chen, C.; Shi, J.; Guo, Y.; Zha, L.; Lan, L.; Chang, Y.; Ding, Y. A novel aptasensor for malathion blood samples detection based on DNA–silver nanocluster. Anal. Methods 2018, 10, 1928–1934. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Tian, T.; Yu, L. Simple and sensitive detection of pesticides using the liquid crystal droplet patterns platform. Sens. Actuators B Chem. 2017, 238, 676–682. [Google Scholar] [CrossRef]
- Duan, R.; Hao, X.; Li, Y.; Li, H. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode. Sens. Actuators B Chem. 2020, 308, 127672. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Jang, C.H. An acetylcholinesterase-based biosensor for the detection of pesticides using liquid crystals confined in microcapillaries. Colloid Surf. B-Biointerfaces 2021, 200, 111587. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.H.; Tingey, M.L.; Korpi, N.L.; Wiepz, G.J.; Schiller, J.H.; Bertics, P.J. Using liquid crystals to report membrane proteins captured by affinity microcontact printing from cell lysates and membrane extracts. J. Am. Chem. Soc. 2005, 127, 8912–8913. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Pina, A.S.; Roque, A.C.A. Bio-recognition and detection using liquid crystals. Biosens. Bioelectron. 2009, 25, 1–8. [Google Scholar] [CrossRef]
- Hartono, D.; Xue, C.Y.; Yang, K.L.; Yung, L.Y.L. Decorating liquid crystal surfaces with proteins for real-time detection of specific protein–protein binding. Adv. Funct. Mater. 2009, 19, 3574–3579. [Google Scholar] [CrossRef]
- Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31. [Google Scholar] [CrossRef]
- Verdian, A.; Rouhbakhsh, Z.; Fooladi, E. An ultrasensitive platform for PCB77 detection: New strategy for liquid crystal-based aptasensor fabrication. J. Hazard. Mater. 2021, 402, 123531. [Google Scholar] [CrossRef]
- Nandi, R.; Pal, S.K. Liquid crystal based sensing device using a smartphone. Analyst 2018, 143, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Roushani, M.; Shahdost-fard, F. A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sens. Actuators B 2015, 207, 764–771. [Google Scholar] [CrossRef]
- Iliuk, A.B.; Hu, L.; Andy Tao, W. Aptamer in Bioanalytical Applications. Anal. Chem. 2011, 83, 4440–4452. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.R.; Lai, R.Y.; Wood, M.S.; Doctor, E.H.; Heeger, A.J.; Plaxco, K.W. An electronic aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluid. J. Am. Chem. Soc. 2006, 128, 3138–3139. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, B.; Li, J.; Wang, E.; Dong, S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem. Commun. 2007, 36, 3735–3737. [Google Scholar] [CrossRef]
- Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 2010, 82, 2341–2346. [Google Scholar] [CrossRef]
- Li, J.; Zhong, X.; Zhang, H.; Le, X.C.; Zhu, J.J. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal. Chem. 2012, 84, 5170–5174. [Google Scholar] [CrossRef] [PubMed]
- Hamula, C.L.A.; Guthrie, J.W.; Zhang, H.; Li, X.F.; Le, X.C. Selection and analytical applications of aptamers. Trends Anal. Chem. 2006, 25, 681–691. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chang, H.T.; Tan, W. Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal. Chem. 2008, 80, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhan, S.; Xing, H.; He, L.; Xua, L.; Zhou, P. Nanoparticles assembled by aptamers and crystal violet for arsenic(III) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay. Nanoscale 2012, 4, 6841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Q.; Guo, Y.; Yu, L. A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor. Biosens. Bioelectron. 2015, 72, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.Z.; Jang, C.H. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer. ACS Appl. Mater. Interfaces 2012, 4, 1791–1795. [Google Scholar] [CrossRef]
- McUmber, A.C.; Noonan, P.S.; Schwartz, D.K. Surfactant–DNA interactions at the liquid crystal–aqueous interface. Soft Matter 2012, 8, 4335–4342. [Google Scholar] [CrossRef]
- Munir, S.; Park, S.Y. Liquid crystal-based DNA biosensor for myricetin detection. Sens. Actuators B 2016, 233, 559–565. [Google Scholar] [CrossRef]
- Verma, I.; Devi, M.; Sharma, D.; Nandi, R.; Pal, S.K. Liquid crystal based detection of Pb(II) ions using spinach RNA as recognition probe. Langmuir 2019, 35, 7816–7823. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Jang, C.H. Label-free liquid crystal-based detection of As(III) ions using ssDNA as a recognition probe. Microchem. J. 2020, 156, 104834. [Google Scholar] [CrossRef]
- Bala, R.; Mittal, S.; Sharma, R.K.; Wangoo, N. A supersensitive silver nanoprobe based aptasensor for low cost detection of malathion residues in water and food samples. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2018, 196, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Bala, R.; Kumar, M.; Bansal, K.; Sharma, R.K.; Wangoo, N. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens. Bioelectron. 2016, 85, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Barahona, F.; Bardliving, C.L.; Phifer, A.; Bruno, J.G.; Batt, C.A. An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced raman spectroscopy. Ind. Biotechnol. 2013, 9, 42–50. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, P.; Kumar, N.; Nara, S. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens. Bioelectron. 2017, 92, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Ye, X.; Cai, J.; Liu, J.; Zhang, A. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens. Bioelectron. 2010, 25, 2503–2508. [Google Scholar] [CrossRef] [PubMed]
- Guler, M.; Turkoglu, V.; Kivrak, A. Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environ. Sci. Pollut. Res. 2016, 23, 12343–12351. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.N.; Rajeshwari, A.; Alex, S.A.; Sahu, M.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Acetylcholinesterase (AChE)-mediated immobilization of silver nanoparticles for the detection of organophosphorus pesticides. RSC Adv. 2015, 5, 61998–62006. [Google Scholar] [CrossRef]
- Migliorini, F.L.; Sanfelice, R.C.; Mercante, L.A.; Facure, M.H.M.; Correa, D.S. Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Mater. Res. Express 2020, 7, 015601. [Google Scholar] [CrossRef]
Pesticides | AGI (a.u.) | RSD a |
---|---|---|
Malathion | 48.54 | 3.75 |
Ethion | 139.82 | 4.15 |
Fenobucarb | 145.81 | 2.54 |
Fenthion | 144.26 | 3.46 |
Phosmet | 139.39 | 4.1 |
Carbofuran | 138.14 | 3.95 |
Mix b | 53.05 | 1.11 |
Malathion concentration (nM) | AGI (a.u.) | RSD |
---|---|---|
1 | 144.314 | 3.75 |
3 | 128.312 | 4.21 |
5 | 117.08 | 2.94 |
10 | 109.946 | 5.1 |
50 | 91.884 | 4.16 |
100 | 82.344 | 3.15 |
200 | 65.97 | 4.97 |
400 | 59.62 | 3.87 |
600 | 48.106 | 3.12 |
Method (Material) | Detection Range | Detection Limit | Reference |
---|---|---|---|
Colorimetric (AuNPs) a | 50–800 nM | 11.8 nM | [4] |
GC-FPD b | 30.27 pM–302.7 nM | 24.2 pM | [11] |
GC-TSD c | 0.01–12.0 mg/kg | 0.3 mg/kg | [12] |
SERS d | 9.99–100.8 μM | 10 μM | [46] |
Colorimetric (Pd@AuNRs) e | 0.001–200 μg/mL | 181 nM | [47] |
Amperometry (PAn-PPy-MWCNTs) f | 0.03–75.67 μM | 3.03 nM | [48] |
Electrochemical (PTT) g | 9.99–99.01 nM | 4.08 nM | [49] |
UV-Vis spectroscopy (AgNPs) h | 0–100 nM | 0.455 nM | [50] |
Electrochemical (PA6/PPy/RGO) i | 1.51–60.54 μM | 2.42 nM | [51] |
Liquid crystal | 1–600 nM | 0.465 nM | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.K.; Jang, C.-H. A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples. Biosensors 2021, 11, 92. https://doi.org/10.3390/bios11030092
Nguyen DK, Jang C-H. A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples. Biosensors. 2021; 11(3):92. https://doi.org/10.3390/bios11030092
Chicago/Turabian StyleNguyen, Duy Khiem, and Chang-Hyun Jang. 2021. "A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples" Biosensors 11, no. 3: 92. https://doi.org/10.3390/bios11030092
APA StyleNguyen, D. K., & Jang, C. -H. (2021). A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples. Biosensors, 11(3), 92. https://doi.org/10.3390/bios11030092