A Theoretical and Simulation Analysis of the Sensitivity of SiNWs-FET Sensors
Abstract
:1. Introduction
2. Theoretical Analysis
3. Simulation Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, Z.; Zong, S.; Liu, Y.; Qian, Z.; Zhu, K.; Yang, Z.; Wang, Z.; Cui, Y. Simultaneous detection of multiple exosomal microRNAs for exosome screening based on rolling circle amplification. Nanotechnology 2021, 32, 085504. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.W.; Ma, R. Bioinformatics analysis of dysregulated microRNAs in the nipple discharge of patients with breast cancer. Oncol. Lett. 2017, 13, 3100–3108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, A.; Yang, X.; Tong, J.; Zhou, L.; Wang, Y.; Zhao, J.; Mao, H.; Li, T. Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays. Biosens. Bioelectron. 2017, 91, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Ruzsanyi, V.; Wiesenhofer, H.; Ager, C.; Herbig, J.; Aumayr, G.; Fischer, M.; Renzler, M.; Ussmueller, T.; Lindner, K.; Mayhew, C. A portable sensor system for the detection of human volatile compounds against transnational crime. Sens. Actuators B Chem. 2021, 328, 1–8. [Google Scholar] [CrossRef]
- Vanegas, D.C.; Patiño, L.; Mendez, C.; De Oliveira, D.A.; Torres, A.M.; Gomes, C.L.; McLamore, E.S. Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials. Biosensors 2018, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, N.; Clarke, C. Nanostructured Gas Sensors for Medical and Health Applications: Low to High Dimensional Materials. Biosensors 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.-H.; Choi, M.; Ku, K.B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Mirsian, S.; Khodadadian, A.; Hedayati, M.; Manzour-Ol-Ajdad, A.; Kalantarinejad, R.; Heitzinger, C. A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens. Bioelectron. 2019, 142, 111527. [Google Scholar] [CrossRef]
- Ivanov, Y.; Pleshakova, T.; Malsagova, K.; Kurbatov, L.; Popov, V.; Glukhov, A.; Smirnov, A.; Enikeev, D.; Potoldykova, N.; Alekseev, B.; et al. Detection of Marker miRNAs, Associated with Prostate Cancer, in Plasma Using SOI-NW Biosensor in Direct and Inversion Modes. Sensors 2019, 19, 5248. [Google Scholar] [CrossRef] [Green Version]
- Gao, A.; Lu, N.; Wang, Y.; Dai, P.; Li, T.; Gao, X.; Wang, Y.; Fan, C. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 2012, 12, 5262–5268. [Google Scholar] [CrossRef]
- Lu, N.; Gao, A.; Dai, P.; Song, S.; Fan, C.; Wang, Y.; Li, T. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small 2014, 10, 2022–2028. [Google Scholar] [CrossRef]
- Lu, M.-P.; Vire, E.; Montes, L. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs. Nanotechnology 2015, 26, 495501. [Google Scholar] [CrossRef]
- Bunimovich, Y.L.; Ge, G.; Beverly, K.C.; Ries, R.S.; Hood, L.; Heath, J.R. Electrochemically programmed, spatially selective biofunctionalization of silicon wires. Langmuir 2004, 20, 10630–10638. [Google Scholar] [CrossRef]
- Meir, R.; Zverzhinetsky, M.; Harpak, N.; Borberg, E.; Burstein, L.; Zeiri, O.; Krivitsky, V.; Patolsky, F. Direct Detection of Uranyl in Urine by Dissociation from Aptamer-modified Nanosensors Arrays. Anal. Chem. 2020, 92, 12528–12537. [Google Scholar] [CrossRef]
- Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.-I.; Kim, K.; Cho, D.-I. (Dan) Nanowire-Based Biosensors: From Growth to Applications. Micromachines 2018, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Arjmand, T.; Legallais, M.; Haffner, T.; Bawedin, M.; Ternon, C.; Salem, B. Development of a robust fabrication process for single silicon nanowire-based omega gate transistors on polyamide substrate. Semicond. Sci. Technol. 2021, 36, 1–10. [Google Scholar] [CrossRef]
- Verma, A.; Borisov, K.; Connaughton, S.; Stamenov, P. Hall Effect Measurements in Rotating Magnetic Field on Sub-30-nm Silicon Nanowires Fabricated by a Top–Down Approach. IEEE Trans. Electron Devices 2020, 67, 5201–5208. [Google Scholar] [CrossRef]
- Huo, C.; Wang, J.; Fu, H.; Li, X.; Yang, Y.; Wang, H.; Mateen, A.; Farid, G.; Peng, K. Metal-Assisted Chemical Etching of Silicon in Oxidizing HF Solutions: Origin, Mechanism, Development, and Black Silicon Solar Cell Application. Adv. Funct. Mater. 2020, 30, 2005744. [Google Scholar] [CrossRef]
- Ramadan, S.; Bowen, L.; Popescu, S.; Fu, C.; Kwa, K.K.; O’Neill, A. Fully controllable silicon nanowire fabricated using optical lithography and orientation dependent oxidation. Appl. Surf. Sci. 2020, 523, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.; Kang, D.-H.; Meyyappan, M.; Baek, C.-K. Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties. Nano Lett. 2019, 19, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, A.; Wang, Y.; Li, T. Wafer-level and highly controllable fabricated silicon nanowire transistor arrays on (111) silicon-on-insulator (SOI) wafers for highly sensitive detection in liquid and gaseous environments. Nano Res. 2018, 11, 1520–1529. [Google Scholar] [CrossRef]
- He, Y.; Yu, W.; Ouyang, G. Shape-dependent conversion efficiency of Si nanowire solar cells with polygonal cross-sections. J. Appl. Phys. 2016, 119, 1–8. [Google Scholar] [CrossRef]
- Huang, W.; Koong, C.S.; Liang, G. Theoretical Study on Thermoelectric Properties of Ge Nanowires Based on Electronic Band Structures. IEEE Electron Device Lett. 2010, 31, 1026–1028. [Google Scholar] [CrossRef]
- Koong, C.S.; Samudra, G.; Liang, G. Shape Effects on the Performance of Si and Ge Nanowire Field-Effect Transistors Based on Size Dependent Bandstructure. Jpn. J. Appl. Phys. 2010, 49, 1–7. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, H.; Chang, S.; He, J.; Huang, Q. Band Structure Effects in Extremely Scaled Silicon Nanowire MOSFETs With Different Cross Section Shapes. IEEE Trans. Electron Devices 2015, 62, 3547–3553. [Google Scholar] [CrossRef]
- Sato, S.; Kakushima, K.; Ahmet, P.; Ohmori, K.; Natori, K.; Yamada, K.; Iwai, H. Effects of corner angle of trapezoidal and triangular channel cross-sections on electrical performance of silicon nanowire field-effect transistors with semi gate-around structure. Solid-State Electron. 2011, 65–66, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Q.; Wang, J.; Reese, O.; Voon, L.C.L.Y.; Eklund, P.C. Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Lett. 2004, 4, 1991–1996. [Google Scholar] [CrossRef]
- Georgakopoulou, K.; Birbas, A.; Spathis, C. Modeling of fluctuation processes on the biochemically sensorial surface of silicon nanowire field-effect transistors. J. Appl. Phys. 2015, 117, 104505. [Google Scholar] [CrossRef]
- Cresti, A.; Pala, M.G.; Poli, S.; Mouis, M.; Ghibaudo, G. A Comparative Study of Surface-Roughness-Induced Variability in Silicon Nanowire and Double-Gate FETs. IEEE Trans. Electron Devices 2011, 58, 2274–2281. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, Y.; Ni, Z.; Wang, Y.; Yi, H.; Li, T. Wafer-level site-controlled growth of silicon nanowires by Cu pattern dewetting. Nano Res. 2015, 8, 2646–2653. [Google Scholar] [CrossRef]
- Fonash, S.J. Advances in Dry Etching Processes—A Review. Solid State Technol. 1985, 28, 150–158. [Google Scholar]
- Pepper, M.; Eccleston, W. The influence of the electrode on the low temperature annealing of interface states in the Si-SiO2 system. Thin Solid Films 1971, 8, 133–142. [Google Scholar] [CrossRef]
- Kar, S.; Dahlke, W. Interface states in MOS structures with 20–40 Å thick SiO2 films on nondegenerate Si. Solid-State Electron. 1972, 15, 221–237. [Google Scholar] [CrossRef]
- Ryan, J.T.; Matsuda, A.; Campbell, J.P.; Cheung, K.P. Interface-state capture cross section—Why does it vary so much? Appl. Phys. Lett. 2015, 106, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Uren, M.J.; Nayar, V.; Brunson, K.M.; Anthony, C.J.; Stathis, J.H.; Cartier, E. Interface state capture cross section measurements on vacuum annealed and radiation damaged Si:SiO2 surfaces. J. Electrochem. Soc. 1998, 145, 683–689. [Google Scholar] [CrossRef]
- Jeon, I.S.; Park, J.; Eom, D.; Hwang, C.S.; Kim, H.J.; Park, C.J.; Cho, H.Y.; Lee, J.-H.; Lee, N.-I.; Kang, H.-K. Post-annealing effects on fixed charge and slow/fast interface states of TiN/Al2O3/p-Si metal–oxide–semiconductor capacitor. Jpn. J. Appl. Phys. 2003, 42, 1222–1226. [Google Scholar] [CrossRef]
- Oehrlein, G.S. Dry etching damage of silicon—A review. Mater. Sci. Eng. B 1989, 4, 441–450. [Google Scholar] [CrossRef]
- Shoorideh, K.; Chui, C.O. On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc. Natl. Acad. Sci. USA 2014, 111, 5111–5116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cross-Sectional Areas | Value |
---|---|
The Surface-to-Volume Ratio | Value |
---|---|
Depletion Ratio | Value |
---|---|
The Offset of Threshold Voltage | Value |
---|---|
∆VTH-tri | 0.7 V |
∆VTH-squ | 0.97 V |
∆VTH-cir | 1.07 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Lu, Z.; Liu, D.; Wang, Y.; Chen, S.; Li, T. A Theoretical and Simulation Analysis of the Sensitivity of SiNWs-FET Sensors. Biosensors 2021, 11, 121. https://doi.org/10.3390/bios11040121
Yang Y, Lu Z, Liu D, Wang Y, Chen S, Li T. A Theoretical and Simulation Analysis of the Sensitivity of SiNWs-FET Sensors. Biosensors. 2021; 11(4):121. https://doi.org/10.3390/bios11040121
Chicago/Turabian StyleYang, Yi, Zicheng Lu, Duo Liu, Yuelin Wang, Shixing Chen, and Tie Li. 2021. "A Theoretical and Simulation Analysis of the Sensitivity of SiNWs-FET Sensors" Biosensors 11, no. 4: 121. https://doi.org/10.3390/bios11040121
APA StyleYang, Y., Lu, Z., Liu, D., Wang, Y., Chen, S., & Li, T. (2021). A Theoretical and Simulation Analysis of the Sensitivity of SiNWs-FET Sensors. Biosensors, 11(4), 121. https://doi.org/10.3390/bios11040121