An Exonuclease I-Aided Turn-Off Fluorescent Strategy for Alkaline Phosphatase Assay Based on Terminal Protection and Copper Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. The Quantitative Detection of ALP
2.4. Gel Electrophoresis Analysis
3. Results
3.1. Sensing Strategy of ALP Detection
3.2. Verification of the Feasibility of the Sensing Strategy
3.3. Optimization of Experimental Conditions
3.4. Quantitative Fluorescence Measurement of ALP Activity
3.5. Selectivity Assay
3.6. ALP Inhibition Investigation
3.7. ALP Assay in Diluted Human Serum Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, H.H.; Deng, Q.; Li, K.L.; Zhuang, Q.Q.; Zhuang, Y.B.; Peng, H.P.; Xia, X.H.; Chen, W. Fluorescent gold nanocluster-based sensor for detection of alkaline phosphatase in human osteosarcoma cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117875. [Google Scholar] [CrossRef]
- Balbaied, T.; Hogan, A.; Moore, E. Electrochemical Detection and Capillary Electrophoresis: Comparative Studies for Alkaline Phosphatase (ALP) Release from Living Cells. Biosensors 2020, 10, 95. [Google Scholar] [CrossRef]
- Li, J.; Huo, F.; Wen, Z.; Yin, C. A fluorescent turn-on probe based on isophorone for the rapid detection of alkaline phosphatase and its application in bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 221, 117156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nie, Y.; Zhu, R.; Han, D.; Zhao, H.; Li, Z. Nitrogen doped carbon dots for turn-off fluorescent detection of alkaline phosphatase activity based on inner filter effect. Talanta 2019, 204, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, Y.; Huang, Z.Z.; Tan, H. Visual detection of alkaline phosphatase based on ascorbic acid-triggered gel-sol transition of alginate hydrogel. Anal. Chim. Acta 2021, 1148, 238193. [Google Scholar] [CrossRef]
- Liu, H.; Ma, C.; Wang, J.; Wang, K.; Wu, K. A turn-on fluorescent method for determination of the activity of alkaline phosphatase based on dsDNA-templated copper nanoparticles and exonuclease based amplification. Microchim. Acta 2017, 184, 2483–2488. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Ma, C. Sensitive fluorescence assay for the detection of alkaline phosphatase based on Cu2+-thiamine system. Sensors 2021, 21, 674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Guo, L.; Chen, S.; Yu, Y.L.; Wang, J.H. A portable photoacoustic device for facile and sensitive detection of serum alkaline phosphatase activity. Anal. Chim. Acta 2020, 1108, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Gwynne, L.; Sedgwick, A.C.; Gardiner, J.E.; Williams, G.T.; Kim, G.; Lowe, J.P.; Maillard, J.Y.; Jenkins, A.T.A.; Bull, S.D.; Sessler, J.L.; et al. Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells. Front. Chem. 2019, 7, 255. [Google Scholar] [CrossRef] [Green Version]
- Kiran, S.; Khatik, R.; Schirhagl, R. Smart probe for simultaneous detection of copper ion, pyrophosphate, and alkaline phosphatase in vitro and in clinical samples. Anal. Bioanal. Chem. 2019, 411, 6475–6485. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Jiang, R.; He, H.; Ma, C.; Tang, Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Anal. Chem. 2021, 139, 116257. [Google Scholar] [CrossRef]
- Prakash, A.R.; Nahar, P.; Ashtekar, M.; Natarajan, S.; Singh, R.; Kulkarni, G. Detection of Salivary Alkaline Phosphatase Levels in Smokers, Diabetic Patients, Potentially Malignant Diseases and Oral Malignant Tumours. J. Pharm. Bioallied Sci. 2020, 12 (Suppl. 1), S430–S435. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Gao, M.; Song, Y.; Lin, L.; Zhao, K.; Tian, T.; Liu, D.; Zhu, Z.; Yang, C.J. An Allosteric-Probe for Detection of Alkaline Phosphatase Activity and Its Application in Immunoassay. Front. Chem. 2018, 6, 618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, W.; Zhang, W.; Liu, Y.; Qin, Y.; Zhang, W.; Zhou, Z.; Zhou, Y.; Wang, H.; Xiao, X.; et al. A path-choice-based biosensor to detect the activity of the alkaline phosphatase as the switch. Anal. Chim. Acta 2020, 1135, 64–72. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Huang, C.; Luo, Y.; Shi, G.; Zhou, T.; Deng, J. A smartphone-based platform for point-of-use determination of alkaline phosphatase as an indicator of water eutrophication. Microchim. Acta 2020, 187, 354. [Google Scholar] [CrossRef]
- Li, C.M.; Zhen, S.J.; Wang, J.; Li, Y.F.; Huang, C.Z. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens. Bioelectron. 2013, 43, 366–371. [Google Scholar] [CrossRef]
- Shen, C.; Li, X.; Rasooly, A.; Guo, L.; Zhang, K.; Yang, M. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens. Bioelectron. 2016, 85, 220–225. [Google Scholar] [CrossRef]
- Lakra, S.; Jadhav, V.J.; Garg, S.R. Development of a Chromatographic Method for the Determination of Alkaline Phosphatase Activity in Pasteurized Milk. Food Anal. Methods 2016, 9, 2002–2009. [Google Scholar] [CrossRef]
- Ruan, C.; Wang, W.; Gu, B. Detection of Alkaline Phosphatase Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2006, 78, 3379–3384. [Google Scholar] [CrossRef]
- Qi, W.; Fu, Y.; Zhao, M.; He, H.; Tian, X.; Hu, L.; Zhang, Y. Electrochemiluminescence resonance energy transfer immunoassay for alkaline phosphatase using p-nitrophenyl phosphate as substrate. Anal. Chim. Acta 2020, 1097, 71–77. [Google Scholar] [CrossRef]
- Ye, K.; Niu, X.; Song, H.; Wang, L.; Peng, Y. Combining CeVO4 oxidase-mimetic catalysis with hexametaphosphate ion induced electrostatic aggregation for photometric sensing of alkaline phosphatase activity. Anal. Chim. Acta 2020, 1126, 16–23. [Google Scholar] [CrossRef]
- Song, A.M.; Tong, Y.J.; Liang, R.P.; Qiu, J.D. A ratiometric lanthanide fluorescent probe for highly sensitive detection of alkaline phosphatase and arsenate. Microchem. J. 2021, 164, 106027. [Google Scholar] [CrossRef]
- Yu, L.D.; Wang, Y.N.; Zhang, X.Y.; Li, N.B.; Luo, H.Q. A novel signal-on photoelectrochemical platform for highly sensitive detection of alkaline phosphatase based on dual Z-scheme CdS/Bi2S3/BiOCl composites. Sens. Actuators B Chem. 2021, 340, 129988. [Google Scholar] [CrossRef]
- Han, Y.; Chen, J.; Li, Z.; Chen, H.; Qiu, H. Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens. Bioelectron. 2020, 148, 111811. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Geng, X.; Zhang, L.; Huang, Z.; Ge, J.; Li, Z. Nitrogen-doped Carbon Dots Mediated Fluorescent on-off Assay for Rapid and Highly Sensitive Pyrophosphate and Alkaline Phosphatase Detection. Sci. Rep. 2017, 7, 5849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, K.; Zhang, H.; Wang, Z.; Cao, H.; Zhang, K.; Li, X.; Yang, Z. Nanomaterial-based aptamer sensors for arsenic detection. Biosens. Bioelectron. 2020, 148, 111785. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Zhang, J.; Zhao, Y.; Huang, X.; Tan, C.; Sun, S.; Tan, Y. Magnetic bead-gold nanoparticle hybrids probe based on optically countable gold nanoparticles with dark-field microscope for T4 polynucleotide kinase activity assay. Biosens. Bioelectron. 2020, 150, 111936. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Ghodake, G.; Cho, S.K.; Kadam, A.; Kumar, G.; Jeon, B.H.; Pant, D.; Bhatnagar, A.; Shin, H.S. Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int. J. Biol. Macromol. 2019, 128, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Geng, F.; Wang, Y.; Yu, H.; Li, L.; Yang, S.; Liu, J.; Huang, W. Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr3+ and pyrophosphate and ALP. Talanta 2019, 205, 120132. [Google Scholar] [CrossRef]
- Chen, P.; Yan, S.; Sawyer, E.; Ying, B.; Wei, X.; Wu, Z.; Geng, J. Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition. Analyst 2019, 144, 1147–1152. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Luo, Y.; Chen, Q.; Lai, Q.; Zheng, Q. Redox-modulated colorimetric detection of ascorbic acid and alkaline phosphatase activity with gold nanoparticles. Luminescence 2020, 35, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; He, W.; Liu, C. Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs). Talanta 2019, 195, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.-Z.; Zhang, L.; Qiao, M.; Ge, J.; Liu, A.-L.; Li, Z.-H. A label-free assay for T4 polynucleotide kinase/phosphatase activity and its inhibitors based on poly(thymine)-templated copper nanoparticles. Talanta 2016, 146, 253–258. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jiao, B. Simple and convenient G-quadruplex-based fluorescent assay of biotin-streptavidin interaction via terminal protection of small molecule-linked DNA. Microchim. Acta 2016, 183, 3303–3309. [Google Scholar] [CrossRef]
- Balbaied, T.; Moore, E. Overview of Optical and Electrochemical Alkaline Phosphatase (ALP) Biosensors: Recent Approaches in Cells Culture Techniques. Biosensors 2019, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Q.; Liu, Y.; Wang, B.; Zhou, S. A molecular device: A DNA molecular lock driven by the nicking enzymes. Comput. Struct. Biotechnol. J. 2020, 18, 2107–2116. [Google Scholar] [CrossRef]
Methods | LOD (U/L) | Dynamic Range (U/L) | Reference |
---|---|---|---|
Colorimetric | 0.52 | 3–18 | [25] |
Electrochemiluminescence | 0.80 | 5–50 | [20] |
Photometric | 0.68 | 1–210 | [21] |
Ratiometric assay | 0.0017 | 0.005–60 | [22] |
Photoelectrochemical | 0.06 | 0.1–4000 | [23] |
Electrochemical | 0.20 | 3–50 | [35] |
Fluorescence AgNPs | 0.25 | 1–1000 | [30] |
Fluorescence carbon dots | 0.02 | 0.05–40 | [4] |
Fluorescence CuNPs | 0.0098 | 0.01–5 | This work |
Sample | Added (U/L) | Found (U/L) | Recovery |
---|---|---|---|
1 | 0.5 | 0.49 ± 0.04 | 97.15% |
2 | 3 | 3.06 ± 0.27 | 102.11% |
3 | 5 | 4.99 ± 0.05 | 99.89% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yan, Y.; Liu, X.; Ma, C. An Exonuclease I-Aided Turn-Off Fluorescent Strategy for Alkaline Phosphatase Assay Based on Terminal Protection and Copper Nanoparticles. Biosensors 2021, 11, 139. https://doi.org/10.3390/bios11050139
Wang Y, Yan Y, Liu X, Ma C. An Exonuclease I-Aided Turn-Off Fluorescent Strategy for Alkaline Phosphatase Assay Based on Terminal Protection and Copper Nanoparticles. Biosensors. 2021; 11(5):139. https://doi.org/10.3390/bios11050139
Chicago/Turabian StyleWang, Yan, Ying Yan, Xinfa Liu, and Changbei Ma. 2021. "An Exonuclease I-Aided Turn-Off Fluorescent Strategy for Alkaline Phosphatase Assay Based on Terminal Protection and Copper Nanoparticles" Biosensors 11, no. 5: 139. https://doi.org/10.3390/bios11050139
APA StyleWang, Y., Yan, Y., Liu, X., & Ma, C. (2021). An Exonuclease I-Aided Turn-Off Fluorescent Strategy for Alkaline Phosphatase Assay Based on Terminal Protection and Copper Nanoparticles. Biosensors, 11(5), 139. https://doi.org/10.3390/bios11050139