Electrochemical Sensors for Determination of Bromate in Water and Food Samples—Review
Abstract
:1. Introduction
- Ability to determine BrO3− down to a limit of detection that is 25% of the MAL
- Short analysis time and cost
- No sample pre-treatment
- Method accessibility
2. Electrocatalytic Reduction of Bromate
3. Bromate Electrochemical Techniques and Sensors
3.1. Determination of Bromate at Conducting Polymer-Based Modified Electrodes
3.2. Determination of Bromate with Carbon Nanotubes (CNTs)-Based Electrodes
3.3. Determination of Bromate at Graphene/Graphene Oxide-Based Electrodes
3.4. Determination of Bromate at Metal/Metal Oxide-Based Modified Electrodes
- The large number of PANI/SBA-15 nitrogen sites available for anchorage of Pd-NPs that ensures a large quantity of uniformly dispersed small Pd-NPs.
- The successful incorporation of mesoporous SBA-15 significantly increases the effective electrode surface and electrolyte diffusion velocity.
- The strong acidity of the medium that provides abundant H+ for the BrO3 electroreduction reaction.
3.5. Bromate Determination by Modified Electrode with Quantum Dots
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Ascorbic acid |
AP | Amperometry |
BrO3− | Bromate |
CNTs | Carbon nanotubes |
CQDs | Carbon quantum dots |
CV | Cyclic voltammetry |
DA | Dopamine |
ECL | Electrochemiluminescence |
EIS | Electrochemical impedance spectroscopy |
GC | Gas chromatography |
GCE | Glassy carbon electrode |
HPLC | High-performance liquid chromatography |
IC | Ion chromatography |
LC | Liquid chromatography |
LDR | Linear dynamic range |
LOD | Limit of detection |
MP | Metal phthalocyanine |
MWCNT | Multi-walled carbon nanotube |
PFA | Polyunsaturated fatty acid |
Rgo | Reduced graphene oxide |
SP | Spectrophotometry |
SPCE | Screen-printed carbon electrode |
SWV | Square wave voltammetry |
References
- Crofton, K.M. Bromate: Concern for developmental neurotoxicity? Toxicology 2006, 221, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Fawell, J.; Walker, M. Approaches to determining regulatory values for carcinogens with particular reference to bromate. Toxicology 2006, 221, 149–153. [Google Scholar] [CrossRef]
- Balamurugan, A.; Chen, S.-M. Silicomolybdate-Doped PEDOT Modified Electrode: Electrocatalytic Reduction of Bromate and Oxidation of Ascorbic Acid. Electroanalysis 2007, 19, 1616–1622. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Shanmugavel, V.; Komala Santhi, K.; Kurup, A.H.; Kalakandan, S.; Anandharaj, A.; Rawson, A. Potassium bromate: Effects on bread components, health, environment and method of analysis: A review. Food Chem. 2020, 311, 125964. [Google Scholar] [CrossRef] [PubMed]
- Rahali, Y.; Benmoussa, A.; Ansar, M.; Benziane, H.; Lamsaouri, J.; Idrissi, M.; Draoui, M.; Zahidi, A.; Taoufik, J. A simple and rapid method for spectrophotometric determination of bromate in bread. Electron. J. Environ. Agric. Food Chem. 2011, 10, 1803–1808. [Google Scholar]
- Snyder, S.A.; Vanderford, B.J.; Rexing, D.J. Trace analysis of bromate, chlorate, iodate, and perchlorate in natural and bottled waters. Environ. Sci. Technol. 2005, 39, 4586–4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakaria, P.; Bloomfield, C.; Shellie, R.A.; Haddad, P.R.; Dicinoski, G.W. Determination of bromate in sea water using multi-dimensional matrix-elimination ion chromatography. J. Chromatogr. A 2011, 1218, 9080–9085. [Google Scholar] [CrossRef]
- Kim, H.J.; Shin, H.S. Ultra trace determination of bromate in mineral water and table salt by liquid chromatography-tandem mass spectrometry. Talanta 2012, 99, 677–682. [Google Scholar] [CrossRef]
- Menendez-Miranda, M.; Fernandez-Arguelles, M.T.; Costa-Fernandez, J.M.; Pereiro, R.; Sanz-Medel, A. Room temperature phosphorimetric determination of bromate in flour based on energy transfer. Talanta 2013, 116, 231–236. [Google Scholar] [CrossRef]
- Majidi, M.R.; Ghaderi, S.; Asadpour-Zeynali, K.; Dastangoo, H. Electrochemical Determination of Bromate in Different Types of Flour and Bread by a Sensitive Amperometric Sensor Based on Palladium Nanoparticles/Graphene Oxide Nanosheets. Food Anal. Methods 2015, 8, 2011–2019. [Google Scholar] [CrossRef]
- Luo, X.L.; Xu, J.J.; Zhang, Q.; Yang, G.J.; Chen, H.Y. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens. Bioelectron. 2005, 21, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Abroa-Nemeir, I.; Ben Halima, H.; Gallardo-Gonzalez, J.; El Alami El Hassani, N.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; et al. Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sens. Actuators B Chem. 2020, 309, 127753. [Google Scholar] [CrossRef]
- Qiu, S.; Gao, S.; Liu, Q.; Lin, Z.; Qiu, B.; Chen, G. Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry. Biosens. Bioelectron. 2011, 26, 4326–4330. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-B.; Rahman, M.M.; Xu, G.-R.; Lee, J.-J. Highly Sensitive and Selective Detection of Dopamine at Poly(chromotrope 2B)-Modified Glassy Carbon Electrode in the Presence of Uric Acid and Ascorbic Acid. Electrochim. Acta 2015, 173, 440–447. [Google Scholar] [CrossRef]
- Ding, L.; Liu, Y.; Guo, S.-X.; Zhai, J.; Bond, A.M.; Zhang, J. Phosphomolybdate@poly(diallyldimethylammonium chloride)-reduced graphene oxide modified electrode for highly efficient electrocatalytic reduction of bromate. J. Electroanal. Chem. 2014, 727, 69–77. [Google Scholar] [CrossRef]
- Guo, W.; Geng, M.; Zhou, L.; Chao, S.; Yang, R.; An, H.; Liu, H.; Cui, C. Multi-walled carbon nanotube modified electrode for sensitive determination of an anesthetic drug: Tetracaine hydrochloride. Int. J. Electroanal. Chem. 2013, 8, 5369–5381. [Google Scholar]
- Beitollahi, H.; Safaei, M.; Tajik, S. Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples: A review. Anal. Bioanal. Chem. Res. 2019, 6, 81–96. [Google Scholar]
- Li, X.; Li, J.; Wang, H.; Li, R.; Ma, H.; Du, B.; Wei, Q. An electrochemiluminescence sensor for bromate assay based on a new cationic polythiophene derivative. Anal. Chim. Acta 2014, 852, 69–73. [Google Scholar] [CrossRef]
- Salimi, A.; MamKhezri, H.; Hallaj, R.; Zandi, S. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection. Electrochim. Acta 2007, 52, 6097–6105. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Lee, H.J.; Jang, A. Amperometric bromate-sensitive sensor via layer-by-layer assembling of metalloporphyrin and polyelectrolytes on carbon nanotubes modified surfaces. Sens. Actuators B Chem. 2017, 244, 157–166. [Google Scholar] [CrossRef]
- Wang, N.; He, S.; Zhu, Y. Low-level bromate analysis by ion chromatography on a polymethacrylate-based monolithic column followed by a post-column reaction. Eur. Food Res. Technol. 2012, 235, 685–692. [Google Scholar] [CrossRef]
- Ali, B.; Laffir, F.; Kailas, L.; Armstrong, G.; Kailas, L.; O’Connell, R.; McCormac, T. Electrochemical Characterisation of NiII-Crown-Type Polyoxometalate-Doped Polypyrrole Films for the Catalytic Reduction of Bromate in Water. Eur. J. Inorg. Chem. 2019, 2019, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Cheng, L.; Zhang, X. Electrochemical studies of a lanthanide heteropoly tungstate/molybdate complex in polypyrrole film electrode and its electrocatalytic reduction of bromate. Electrochim. Acta 1998, 43, 563–568. [Google Scholar] [CrossRef]
- Li, Y.; Bu, W.; Wu, L.; Sun, C. A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol–gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method. Sens. Actuators B Chem. 2005, 107, 921–928. [Google Scholar] [CrossRef]
- Casella, I.G.; Contursi, M. Electrochemical and spectroscopic characterization of a tungsten electrode as a sensitive amperometric sensor of small inorganic ions. Electrochim. Acta 2005, 50, 4146–4154. [Google Scholar] [CrossRef]
- Zou, X.; Shen, Y.; Peng, Z.; Zhang, L.; Bi, L.; Wang, Y.; Dong, S. Preparation of a phosphopolyoxomolybdate P2Mo18O626− doped polypyrrole modified electrode and its catalytic properties. J. Electroanal. Chem. 2004, 566, 63–71. [Google Scholar] [CrossRef]
- Pan, D.; Chen, J.; Tao, W.; Nie, L.; Yao, S. Phosphopolyoxomolybdate absorbed on lipid membranes/carbon nanotube electrode. J. Electroanal. Chem. 2005, 579, 77–82. [Google Scholar] [CrossRef]
- Fay, N.; Dempsey, E.; McCormac, T. Assembly, electrochemical characterisation and electrocatalytic ability of multilayer films based on [Fe(bpy)3]2+, and the Dawson heteropolyanion, [P2W18O62]6−. J. Electroanal. Chem. 2005, 574, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, P.A.; Pandey, R.P.; Rasool, K.; Mahmoud, K.A. Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sens. Actuators B Chem. 2018, 265, 652–659. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, L.; Shen, X.; Qian, H. Determination of bromate in drinking water by capillary electrophoresis coupled with chemically modified electrode electrochemical detection. Sci. Sin. Chim. 2012, 42, 157–163. [Google Scholar]
- Sheen, S.; Jos, T.; Rajith, L.; Kumar, K.G. Manganese porphyrin sensor for the determination of bromate. J. Food Sci. Technol. 2016, 53, 1561–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Torre, G.; Vazquez, P.; Agullo-Lopez, F.; Torres, T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 2004, 104, 3723–3750. [Google Scholar] [CrossRef]
- Campidelli, S.; Ballesteros, B.; Filoramo, A.; Díaz, D.D.; de la Torre, G.; Torres, T.; Rahman, G.A.; Ehli, C.; Kiessling, D.; Werner, F. Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via “click chemistry”. J. Am. Chem. Soc. 2008, 130, 11503–11509. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, R.; Zhai, J.; Tian, C. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron. 2007, 23, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, J.; Pan, D.; Tao, W.; Nie, L.; Yao, S. A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film. Electrochim. Acta 2006, 51, 4255–4261. [Google Scholar] [CrossRef]
- Salimi, A.; Kavosi, B.; Babaei, A.; Hallaj, R. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: Application to nanomolar detection of bromate, periodate and iodate. Anal. Chim. Acta 2008, 618, 43–53. [Google Scholar] [CrossRef]
- Vilian, A.T.E.; Chen, S.-M.; Kwak, C.H.; Hwang, S.-K.; Huh, Y.S.; Han, Y.-K. Immobilization of hemoglobin on functionalized multi-walled carbon nanotubes-poly-l-histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2. Sens. Actuators B Chem. 2016, 224, 607–617. [Google Scholar] [CrossRef]
- Salimi, A.; Korani, A.; Hallaj, R.; Khoshnavazi, R.; Hadadzadeh, H. Immobilization of [Cu(bpy)2]Br2 complex onto a glassy carbon electrode modified with α-SiMo12O404− and single walled carbon nanotubes: Application to nanomolar detection of hydrogen peroxide and bromate. Anal. Chim. Acta 2009, 635, 63–70. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Ding, L.; Cui, H.; An, H.; Zhai, J.-P.; Li, Q. Fabrication of high dispersion Pd/MWNTs nanocomposite and its electrocatalytic performance for bromate determination. Chem. Eng. J. 2012, 200–202, 32–38. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.-M.; Thangamuthu, R.; Ajmal Ali, M.; Al-Hemaid, F.M.A. Preparation, Characterization, and Bioelectrocatalytic Properties of Hemoglobin Incorporated Multiwalled Carbon Nanotubes-Poly-L-lysine Composite Film Modified Electrodes Towards Bromate. Electroanalysis 2014, 26, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Baby, T.T.; Aravind, S.S.J.; Arockiadoss, T.; Rakhi, R.B.; Ramaprabhu, S. Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens. Actuators B Chem. 2010, 145, 71–77. [Google Scholar] [CrossRef]
- Liu, H.; Gao, J.; Xue, M.; Zhu, N.; Zhang, M.; Cao, T. Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 2009, 25, 12006–12010. [Google Scholar] [CrossRef]
- Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater. 2009, 19, 2782–2789. [Google Scholar] [CrossRef]
- Li, Z.J.; Xia, Q.F. Recent advances on synthesis and application of graphene as novel sensing materials in analytical chemistry. Rev. Anal. Chem. 2012, 31, 57–81. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Hu, S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 2016, 184, 1–44. [Google Scholar] [CrossRef]
- Palanisamy, S.; Wang, Y.-T.; Chen, S.-M.; Thirumalraj, B.; Lou, B.-S. Direct electrochemistry of immobilized hemoglobin and sensing of bromate at a glassy carbon electrode modified with graphene and β-cyclodextrin. Microchim. Acta 2016, 183, 1953–1961. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Liu, H. Synergistic Removal of Bromate and Ibuprofen by Graphene Oxide and TiO2 Heterostructure Doped with F: Performance and Mechanism. J. Nanomater. 2020, 2020, 6094984. [Google Scholar] [CrossRef]
- Ye, B.; Chen, Z.; Li, X.; Liu, J.; Wu, Q.; Yang, C.; Hu, H.; Wang, R. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water. Front. Environ. Sci. Eng. 2019, 13, 86. [Google Scholar] [CrossRef]
- Kıran, T.R.; Atar, N.; Yola, M.L. A methyl parathion recognition method based on carbon nitride incorporated hexagonal boron nitride nanosheets composite including molecularly imprinted polymer. J. Electrochem. Soc. 2019, 166, H495. [Google Scholar] [CrossRef]
- Tian, K.; Zhang, Y.; Zhang, S.; Dong, Y. Electrogenerated Chemiluminescence of ZnO/MoS2 Nanocomposite and Its Application for Cysteine Detection. J. Electrochem. Soc. 2019, 166, H527. [Google Scholar] [CrossRef]
- Lu, L.; Hu, X.; Zhu, Z.; Li, D.; Tian, S.; Chen, Z. Electrochemical Sensors and Biosensors Modified with Binary Nanocomposite for Food Safety. J. Electrochem. Soc. 2019, 167, 037512. [Google Scholar] [CrossRef]
- Wang, J. Nanoparticle-based electrochemical DNA detection. Anal. Chim. Acta 2003, 500, 247–257. [Google Scholar] [CrossRef]
- Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 2006, 18, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Ourari, A.; Ketfi, B.; Malha, S.; Amine, A. Electrocatalytic reduction of nitrite and bromate and their highly sensitive determination on carbon paste electrode modified with new copper Schiff base complex. J. Electroanal. Chem. 2017, 15, 31–36. [Google Scholar] [CrossRef]
- Zhuang, R.; Jian, F.; Wang, K. An electrochemical sensing platform based on a new Cd(II)-containing ionic liquid for the determination of trichloroacetic acid and bromate. Ionics 2010, 16, 661–666. [Google Scholar] [CrossRef]
- Manivel, A.; Sivakumar, R.; Anandan, S.; Ashokkumar, M. Ultrasound-assisted synthesis of hybrid phosphomolybdate–polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solutions. Electrocatalysis 2012, 3, 22–29. [Google Scholar] [CrossRef]
- Akinremi, C.A.; Oyelude, V.B.; Adewuyi, S.; Amolegbe, S.A.; Arowolo, T. Reduction of Bromate in Water using Zerovalent Cobalt 2,6-Pyridine Dicarboxylic Acid Crosslinked Chitosan Nanocomposite. J. Macromol. Sci. Part A 2013, 50, 435–440. [Google Scholar] [CrossRef]
- Sun, C.; Deng, N.; An, H.; Cui, H.; Zhai, J. Electrocatalytic reduction of bromate based on Pd nanoparticles uniformly anchored on polyaniline/SBA-15. Chemosphere 2015, 141, 243–249. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Thiagarajan, S.; Chen, S.-M. Electrochemical fabrication of AuRh nanoparticles and their electroanalytical applications. Int. J. Electrochem. Sci. 2011, 6, 1331–1341. [Google Scholar]
- Chen, P.-Y.; Yang, H.-H.; Huang, C.-C.; Chen, Y.-H.; Shih, Y. Involvement of Cu(II) in the electrocatalytic reduction of bromate on a disposable nano-copper oxide modified screen-printed carbon electrode: Hair waving products as an example. Electrochim. Acta 2015, 161, 100–107. [Google Scholar] [CrossRef]
- Tamiji, T.; Nezamzadeh-Ejhieh, A. Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn(II)-clinoptilolite-modified carbon paste electrode. J. Solid State Electrochem. 2018, 23, 143–157. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. Engl. 2010, 49, 6726–6744. [Google Scholar] [CrossRef] [PubMed]
- Tuerhong, M.; Xu, Y.; Yin, X.-B. Review on Carbon Dots and Their Applications. Chin. J. Anal. Chem. 2017, 45, 139–150. [Google Scholar] [CrossRef]
- Molaei, M.J. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal. Methods 2020, 12, 1266–1287. [Google Scholar] [CrossRef]
- Liu, R.; Li, H.; Kong, W.; Liu, J.; Liu, Y.; Tong, C.; Zhang, X.; Kang, Z. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater. Res. Bull. 2013, 48, 2529–2534. [Google Scholar] [CrossRef]
- Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Xiang, G.; Fan, H.; Zhang, H.; He, L.; Jiang, X.; Zhao, W. Carbon dot doped silica nanoparticles as fluorescent probe for determination of bromate in drinking water samples. Can. J. Chem. 2018, 96, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Sun, X.-Y.; Shen, J.-S.; Liu, B. A novel photoluminescence sensing system sensitive for and selective to bromate anions based on carbon dots. RSC Adv. 2016, 6, 61891–61896. [Google Scholar] [CrossRef]
- Li, L.; Lai, X.; Xu, X.; Li, J.; Yuan, P.; Feng, J.; Wei, L.; Cheng, X. Determination of bromate via the chemiluminescence generated in the sulfite and carbon quantum dot system. Mikrochim. Acta 2018, 185, 136. [Google Scholar] [CrossRef]
- Boumya, W.; Laghrib, F.; Lahrich, S.; Farahi, A.; Achak, M.; Bakasse, M.; El Mhammedi, M.A. Electrochemical impedance spectroscopy measurements for determination of derivatized aldehydes in several matrices. Heliyon 2017, 3, e00392. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.M.; Baldwin, R.P. Liquid chromatography/electrochemical detection of carbohydrates at a cobalt phthalocyanine containing chemically modified electrode. Anal. Chem. 1987, 59, 1766–1770. [Google Scholar] [CrossRef]
- Mafatle, T.; Nyokong, T. Use of cobalt (II) phthalocyanine to improve the sensitivity and stability of glassy carbon electrodes for the detection of cresols, chlorophenols and phenol. Anal. Chim. Acta 1997, 354, 307–314. [Google Scholar] [CrossRef]
- Kumar, A.; Brunet, J.; Varenne, C.; Ndiaye, A.; Pauly, A.; Penza, M.; Alvisi, M. Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sens. Actuators B Chem. 2015, 210, 398–407. [Google Scholar] [CrossRef]
- Wang, H.; Bu, Y.; Dai, W.; Li, K.; Wang, H.; Zuo, X. Well-dispersed cobalt phthalocyanine nanorods on graphene for the electrochemical detection of hydrogen peroxide and glucose sensing. Sens. Actuators B Chem. 2015, 216, 298–306. [Google Scholar] [CrossRef]
- Ozoemena, K.I.; Nyokong, T. Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 2005, 67, 162–168. [Google Scholar] [CrossRef]
- Lei, P.; Zhou, Y.; Zhu, R.; Liu, Y.; Dong, C.; Shuang, S. Facile synthesis of iron phthalocyanine functionalized N, B–doped reduced graphene oxide nanocomposites and sensitive electrochemical detection for glutathione. Sens. Actuators B Chem. 2019, 297, 126756. [Google Scholar] [CrossRef]
- Meenakshi, S.; Pandian, K.; Jayakumari, L.; Inbasekaran, S. Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin-film modified glassy carbon electrode. Mater. Sci. Eng. C 2016, 59, 136–144. [Google Scholar] [CrossRef]
- Basova, T.; Gürek, A.G.; Ahsen, V.; Ray, A. Electrochromic lutetium phthalocyanine films for in situ detection of NADH. Opt. Mater. 2013, 35, 634–637. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, J.; Liu, B.; Griveau, S.; Bedioui, F. Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens. Bioelectron. 2015, 66, 438–444. [Google Scholar] [CrossRef]
- Palanna, M.; Mohammed, I.; Aralekallu, S.; Nemakal, M.; Sannegowda, L.K. Simultaneous detection of paracetamol and 4-aminophenol at nanomolar levels using biocompatible cysteine-substituted phthalocyanine. New J. Chem. 2020, 44, 1294–1306. [Google Scholar] [CrossRef]
- Azzouzi, S.; Ali, M.B.; Abbas, M.N.; Bausells, J.; Zine, N.; Errachid, A. Novel iron (III) phthalocyanine derivative functionalized semiconductor based transducers for the detection of citrate. Org. Electron. 2016, 34, 200–207. [Google Scholar] [CrossRef]
- Nantaphol, S.; Jesadabundit, W.; Chailapakul, O.; Siangproh, W. A new electrochemical paper platform for detection of 8-hydroxyquinoline in cosmetics using a cobalt phthalocyanine-modified screen-printed carbon electrode. J. Electroanal. Chem. 2019, 832, 480–485. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Xie, G.; Tai, H.; Sun, P.; Zhang, B. Copper phthalocyanine thin film transistors for hydrogen sulfide. Sens. Actuators B Chem. 2013, 176, 1191–1196. [Google Scholar] [CrossRef]
Reaction | E°/V (vs. NHE) |
---|---|
BrO3− + 5H+ + 4e− ↔ HBrO + 2H2O | 1.450 |
BrO3− + 6H+ + 5e− ↔ ½Br2 + 3H2O | 1.482 |
BrO3− + 6H+ + 6e− ↔ Br− + 3H2O | 1.423 |
HBrO + H+ + e− ↔ ½Br2 + H2O | 1.574 |
HBrO + H+ + 2e− ↔ Br− + H2O | 1.331 |
Br2 + 2e− ↔ 2Br− | 1.087 |
Sensor | Linear Range | Detection Limit | ||||
---|---|---|---|---|---|---|
Category | Modified Electrode | Technique | Sample | µM | µM | Ref. |
Conducting | PEDOT/SiMo12/GCE | AP | 30–8 × 103 | [3] | ||
Polymer | PTh-D/nafion/AuE | ECL | Water | 1–1 × 105 | 1 | [19] |
Fe(III)P/MWCNT/GCE | AP | 2–150 | 0.6 | [20] | ||
Fe(III)P/MWCNT/SPCE | AP | Water | 0.1–2.5 | 0.043 | [21] | |
Ni/POM/Ppy/GCE | EIS | Water | 100–2 × 103 | 0.2 | [23] | |
Nd(SiMo7W4)2/PPy/GCE | CV | 0.001–0.032 | [24] | |||
Nafion/Ti3C2Tx/GCE | DPV | Water | 0.05–5 | 0.041 | [30] | |
MWCNT5/PDDA/PMo12/PGE | AP | Water | 0.05–0.4 | 0.020 | [31] | |
TMOPP-Mn(III)Cl)/GE | SWV | Bread | 0.1–1 × 104 | 0.004 | [32] | |
Carbon | PMo12/MWCNTs/PGE | AP | 5–15 × 103 | 0.50 | [36] | |
nanotubes | SWCNT/Os(III)/GCE | AP | 1–2 × 103 | 0.036 | [37] | |
f-MWCNT–P-L-His–ZnO/GCE | AP | Water | 2–15 × 103 | 0.30 | [38] | |
SiMo12O404−/[Cu(bpy)2]2+/CNT/GCE | AP | 0.01–20 | 0.001 | [39] | ||
MWCNT/Pd/GCE | AP | 100–40 × 103 | [40] | |||
MWCNT/PLL/Hb/GCE | AP | Water | 15–6 × 103 | 0.96 | [41] | |
Graphene | GO-PdNPs/GCE | AP | Bread | 1–1 ×103 | 0.105 | [11] |
Graphene-β-CD/GCE | AP | Water | 0.1–177 | 0.033 | [48] | |
rGO-PDDA/PMo12/GCE | CV | 20–10 × 103 | [16] | |||
Metal (oxide) | CuII-DHB/CPE | AP | 2–14 × 103 | 0.010 | [56] | |
Cd-IL/CPE | CV | 0.005–0.020 | 0.003 | [57] | ||
Ag/PMo12/PBz/GCE | AP | 0.086 | [58] | |||
Pd-NPs/PANI/SBA-15/GCE | CV | 8–40 × 103 | 5 | [60] | ||
AuRh/GCE | CV | 1–26 | 1 | [61] | ||
CuO/FIA/SPCE | CV | 0.066–1990 | 0.027 | [62] | ||
CNP-Sn(II)/CPE | SWV | Water | 5–100 | 0.060 | [63] | |
Carbon dots | CDs-PEI | ECL | Water | 0.04–0.35 | 0.0002 | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogun, S.A.; Fayemi, O.E. Electrochemical Sensors for Determination of Bromate in Water and Food Samples—Review. Biosensors 2021, 11, 172. https://doi.org/10.3390/bios11060172
Balogun SA, Fayemi OE. Electrochemical Sensors for Determination of Bromate in Water and Food Samples—Review. Biosensors. 2021; 11(6):172. https://doi.org/10.3390/bios11060172
Chicago/Turabian StyleBalogun, Sheriff A., and Omolola E. Fayemi. 2021. "Electrochemical Sensors for Determination of Bromate in Water and Food Samples—Review" Biosensors 11, no. 6: 172. https://doi.org/10.3390/bios11060172
APA StyleBalogun, S. A., & Fayemi, O. E. (2021). Electrochemical Sensors for Determination of Bromate in Water and Food Samples—Review. Biosensors, 11(6), 172. https://doi.org/10.3390/bios11060172