Silicene Quantum Capacitance Dependent Frequency Readout to a Label-Free Detection of DNA Hybridization— A Simulation Analysis
Abstract
:1. Introduction
- An ion-sensitive silicene-based FETs (ISFETs) structure with an electrolytic solution and a silicene surface layer has been proposed. It has the potential to detect DNA hybridization via quantum capacitance dependent frequency readout.
- An analytical model has been introduced for the measurement of quantum capacitance.
- A comparative study has been performed to find out the most efficient and flexible scheme in silicene quantum capacitance with the help of an LC circuit-based system modeling in contrast to graphene.
2. Design Principle
2.1. ISFET Structure with Silicene and Electrolyte
2.2. Quantum Capacitance Model of Silicene and Graphene
3. System Model Based on Detection Principle
3.1. DNA Hybridization Process
3.2. pH Detection Model
4. Experimental Analysis and Results
4.1. Experiment Setup
4.2. Performance Metrics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two Dimensional |
cDNA | Complementary DNA |
dsDNA | Double-strand DNA |
ssDNA | Single-strand-DNA |
DNA | Deoxyribonucleic Acid |
EOT | Effective Oxide Thickness |
FET | Field Effect Transistor |
GNR | Graphene Nano-ribbon |
ISFET | Ion-sensitive FET |
LC | Inductor and Capacitor Circuit |
MOS | Metal Oxide Semiconductor |
MOSFET | Metal Oxide Semiconductor Field Effect Transistor |
PB | Phosphate Buffer |
PBS | Phosphate Buffer Saline |
SiNR | Silicene Nano-ribbon |
SiNW | Silicene Nanowires |
Gate Capacitance | |
Double Layer Capacitance | |
FET Capacitance | |
Oxide Capacitance | |
Quantum Capacitance | |
Quantum Capacitance of Graphene | |
Quantum Capacitance of Silicene |
References
- Huang, C.W.; Huang, Y.J.; Lin, T.H.; Lin, C.T.; Lee, J.K.; Chen, L.G.; Hsiao, P.Y.; Wu, B.R.; Hsueh, H.T.; Kuo, B.J.; et al. An integrated microcantilever-based wireless DNA chip for Hepatitis B Virus (HBV) DNA detection. In Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS’11), Seattle, WA, USA, 2–6 October 2011; pp. 984–986. [Google Scholar]
- Manoharan, A.K.; Chinnathambi, S.; Jayavel, R. Simplified Detection of the Hybridized DNA Using a Graphene Field Effect Transistor. Sci. Technol. Adv. Mater. 2017, 18, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedin, M.I.; Hassan, A. A novel approach to label-free detection of DNA hybridization based on graphene quantum capacitance dependent frequency/wireless readout. In Proceedings of the 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Savar, Bangladesh, 21–23 May 2015; pp. 1–5. [Google Scholar]
- Noshin, M.; Khan, A.I.; Chakraborty, R.; Subrina, S. Modeling and computation of thermal and optical properties in silicene supported honeycomb bilayer and heterobilayer nanostructures. Mater. Sci. Semicond. Process. 2021, 129, 105776. [Google Scholar] [CrossRef]
- Rahman, M.S.; Nakagawa, T.; Mizuno, S. Growth of Si on Ag (111) and determination of large commensurate unit cell of high-temperature phase. Jpn. J. Appl. Phys. 2014, 54, 015502. [Google Scholar] [CrossRef]
- Salimian, F.; Dideban, D.A. Silicene Nanotube Field Effect Transistor (SiNTFET) with an Electrically Induced Gap and High Value of Ion /Ioff. ECS J. Solid State Sci. Technol. 2018, 7, M1. [Google Scholar] [CrossRef]
- Cahangirov, S.; Sahin, H.; Lay, G.L.; Rubio, A. Introduction to the Physics of Silicene and other 2D Materials; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Zhuang, J.; Xu, X.; Feng, H.; Li, Z.; Wang, X.; Du, Y. Honeycomb Silicon:A review of Silicene. Sci. Bull. 2015, 60, 1551–1562. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene Field-Effect Transistors Operating at Room Temperature. Nat. Nanotechnol. 2015, 10, 227–231. [Google Scholar] [CrossRef]
- Quhe, R. Tunable Band Gap in Silicene and Germanene by Surface Adsorption. Nano Lett. 2012, 2, 113–118. [Google Scholar]
- Quhe, R.; Fei, R.; Liu, Q.; Zheng, J.; Li, H.; Xu, C.; Ni, Z.; Wang, Y.; Yu, D.; Gao, Z.; et al. Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2012, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Feng, W.; Yao, Y. Quantum spin Hall effect in silicene and two dimensional germanium. Phys. Rev. Lett. 2011, 107, 706–802. [Google Scholar] [CrossRef] [Green Version]
- Ni, Z.; Zhong, H.; Jiang, X.; Quhe, R.; Luo, G.; Wang, Y.; Ye, M.; Yang, J.; Shi, J.; Lu, J. Tunable band gap and doping type in silicene by surface adsorption: Towards tunneling transistors. J. Nanoscale 2013, 6, 7609–7618. [Google Scholar] [CrossRef] [Green Version]
- Roome, N.J.; Carey, J.D. Beyond Graphene:Stable Elemental Monolayer of Silicene and Germanene. ACS Appl. Mater. Interfaces 2014, 6, 7743–7750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, H.; Zhang, C.; Li, F.; Wang, P. Electronic and Magnetic Properties of Silicene Nanoflakes by First-principles Calculation. Phys. Lett. A 2013, 377, 2792–2795. [Google Scholar] [CrossRef]
- Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Physics: Condens. Matter 2015, 27, 253002. [Google Scholar] [CrossRef]
- Aleshaikh, S.; Shahtahmassebi, N.; Roknabadi, M.R.; Shahri, R.P. Silicene Nanoribbon as a New DNA Sequencing Devices. Phys. Lett. 2018, 382, 595–600. [Google Scholar] [CrossRef]
- Yang, G.M.; Xu, Q.; Fan, X.; Zheng, W.T. Quantum capacitance of silicene-based electrodes from first-principles calculations. J. Phys. Chem. 2018, 122, 1903–1912. [Google Scholar] [CrossRef]
- Shoorideh, K.; Chui, C.O. On the Origin of Enhanced Sensitivity in Nanoscale FET-Based Biosensors. Proc. Natl. Acad. Sci. USA 2014, 111, 5111–5116. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.; Konar, A.; Xing, H. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 2007, 91, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Xia, J. Measurement of the Quantum Capacitance of Graphene. J. Nanosci. Nanotechnol. 2009, 117, 505–509. [Google Scholar]
- Zhang, A.; Zheng, G.; Lieber, C.M. Nanowire Field-Effect Transistor Sensors. In Nanowires: Building Blocks for Nanoscience and Nanotechnology; 2016; pp. 255–275. Available online: https://link.springer.com/chapter/10.1007/978-3-319-41981-7_10 (accessed on 30 May 2021).
- Hahn, S.; Mergenthaler, S.; Zimmermann, B.; Holzgreve, W. Nucleic acid based biosensors: The desires of the user. Bioelectrochemistry 2005, 67, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Toumazou, C.; Shepherd, L.M.; Reed, S.C.; Chen, G.I.; Patel, A.; Garner, D.M.; Wang, C.J.A.; Ou, C.P.; Amin-Desai, K.; Athanasiou, P.; et al. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 2013, 10, 641–646. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 7, 70–71. [Google Scholar] [CrossRef]
- Kretinin, A.; Yu, G.L.; Jalil, R.; Cao, Y.; Withers, F.; Mishchenko, A.; Katsnelson, M.I.; Novoselov, K.S.; Geim, A.K.; Guinea, F. Quantum capacitance measurements of electron-hole asymmetry and next-nearest-neighbor hopping in graphene. Phys. Rev. B 2013, 88, 165427. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Quhe, R.; Zheng, J.; Ni, Z.; Wang, Y.; Yuan, Y.; Tse, G.; Shi, J.; Gao, Z.; Lu, J. Tunable band gap in germanene by surface adsorption. Phys. E Low Dimens. Syst. Nanostruct. 2014, 59, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Grazianetti, C.; Cinquanta, E.; Tao, L.; De Padova, P.; Quaresima, C.; Ottaviani, C.; Akinwande, D.; Molle, A. Silicon nanosheets: Crossover between multilayer silicene and diamond-like growth regime. ACS Nano 2017, 11, 3376–3382. [Google Scholar] [CrossRef] [PubMed]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2015, 9, 30–35. [Google Scholar] [CrossRef]
- Koester, S.J. High quality factor graphene varactors for wireless sensing applications. Appl. Phys. Lett. 2011, 99, 163105. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Properties of Silicene [9,27,28] | ||
Band gap | – | eV |
Intrinsic mobility | 1000 | cm/V.s |
Fermi velocity | ms | |
Oxide thickness | 6 | |
Residual carrier density | – | cm |
Field effect mobility | 100 –200 | cm/V.s |
Gate length | 1 | m |
Properties of Graphene [29,30] | ||
Band gap | 0 | eV |
Intrinsic mobility | 4000 | cm/V.s |
Fermi velocity | ms | |
Oxide thickness | 5 | |
Residual carrier density | – | cm |
Field effect mobility | 1800 | cm/V.s |
Gate length | m | |
Other Properties | ||
No. of finger | 200 | |
Finger width | 10 | m |
Temperature | 300 | k |
Plank’s constant | m kg/s | |
Dielectric constant | f/m | |
Charge of electron | Coulomb | |
Boltzmann constant | m kg s K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.S.; Naima, R.L.; Shetu, K.J.; Hossain, M.M.; Kaiser, M.S.; Hosen, A.S.M.S.; Sarker, M.A.L.; Ooi, K.J.A. Silicene Quantum Capacitance Dependent Frequency Readout to a Label-Free Detection of DNA Hybridization— A Simulation Analysis. Biosensors 2021, 11, 178. https://doi.org/10.3390/bios11060178
Rahman MS, Naima RL, Shetu KJ, Hossain MM, Kaiser MS, Hosen ASMS, Sarker MAL, Ooi KJA. Silicene Quantum Capacitance Dependent Frequency Readout to a Label-Free Detection of DNA Hybridization— A Simulation Analysis. Biosensors. 2021; 11(6):178. https://doi.org/10.3390/bios11060178
Chicago/Turabian StyleRahman, Md. Sazzadur, Rokaia Laizu Naima, Khatuna Jannatun Shetu, Md. Mahabub Hossain, M. Shamim Kaiser, A. S. M. Sanwar Hosen, Md. Abdul Latif Sarker, and Kelvin J. A. Ooi. 2021. "Silicene Quantum Capacitance Dependent Frequency Readout to a Label-Free Detection of DNA Hybridization— A Simulation Analysis" Biosensors 11, no. 6: 178. https://doi.org/10.3390/bios11060178
APA StyleRahman, M. S., Naima, R. L., Shetu, K. J., Hossain, M. M., Kaiser, M. S., Hosen, A. S. M. S., Sarker, M. A. L., & Ooi, K. J. A. (2021). Silicene Quantum Capacitance Dependent Frequency Readout to a Label-Free Detection of DNA Hybridization— A Simulation Analysis. Biosensors, 11(6), 178. https://doi.org/10.3390/bios11060178