MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.1.1. Materials
2.1.2. Instrumentation
2.2. Experimental Procedures
2.2.1. Circular Probe Fabrication
2.2.2. RCA Reaction
2.2.3. DNAzyme and Cleavage Reaction
3. Results and Discussion
3.1. Principle of the microRNA Detection Method
3.2. Method Feasibility
3.3. Experimental Parameter Optimization
3.3.1. Padlock Probe
3.3.2. DNA Ligase
3.3.3. DNA Polymerase
3.3.4. dNTPs Concentration
3.3.5. H1 and H2 Concentration
3.3.6. Mg2+ Concentration
3.3.7. Substrate Concentration
3.3.8. Sensor Selectivity
3.3.9. Analytical Performance of the Sensing System for miRNA-21 Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ambros, V. microRNAs: Tiny regulators with great potential. Cell 2001, 107, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Perge, P.; Nagy, Z.; Igaz, I.; Igaz, P. Suggested roles for microRNA in tumors. Biomol. Concepts 2015, 6, 149–155. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Sun, G.; Li, H.; Wu, X.; Covarrubias, M.; Scherer, L.; Meinking, K.; Luk, B.; Chomchan, P.; Alluin, J.; Gombart, A.F.; et al. Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res. 2012, 40, 2181–2196. [Google Scholar] [CrossRef] [PubMed]
- Poy, M.N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X.; Macdonald, P.E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P.; et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Gu, H.; Guo, Q.; Liang, S.; Xue, J.; Yao, F.; Liu, X.; Li, F.; Liu, H.; Sun, L.; et al. Profiling of Serum Exosome MiRNA Reveals the Potential of a MiRNA Panel as Diagnostic Biomarker for Alzheimer’s Disease. Mol. Neurobiol. 2021. [Google Scholar] [CrossRef]
- Varallyay, E.; Burgyan, J.; Havelda, Z. Detection of microRNAs by Northern blot analyses using LNA probes. Methods (San Diego Calif.) 2007, 43, 140–145. [Google Scholar] [CrossRef]
- Liu, C.-G.; Calin, G.A.; Volinia, S.; Croce, C.M. MicroRNA expression profiling using microarrays. Nat. Protoc. 2008, 3, 563–578. [Google Scholar] [CrossRef]
- Zhang, H.-H.; Wang, X.-J.; Li, G.-X.; Yang, E.; Yang, N.-M. Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J. Gastroenterol. 2007, 13, 2883–2888. [Google Scholar] [CrossRef] [PubMed]
- Persano, S.; Guevara, M.L.; Wolfram, J.; Blanco, E.; Shen, H.F.; Ferrari, M.; Pompa, P.P. Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection. ACS Omega 2016, 1, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, Y.L.; Wang, H.Y.; Wu, J.; Zhu, F.F.; Zou, P. Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction. Biosens. Bioelectron. 2016, 81, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, N.; Abarghoei, S.; Dadmehr, M.; Hosseini, M.; Sabahi, H.; Ganjali, M.R. Paper based colorimetric detection of miRNA-21 using Ag/Pt nanoclusters. Spectroc. Acta Pt. A Molec. Biomolec. Spectr. 2020, 227, 7. [Google Scholar] [CrossRef]
- Cui, Y.; Fan, S.J.; Yuan, Z.; Song, M.H.; Hu, J.W.; Qian, D.; Zhen, D.S.; Li, J.H.; Zhu, B.D. Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta 2021, 224, 7. [Google Scholar] [CrossRef]
- Rafiee-Pour, H.A.; Behpour, M.; Keshavarz, M. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: Application to breast cancer biomarker miRNA-21. Biosens. Bioelectron. 2016, 77, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.Q.; Deng, H.M.; Shen, W.; Gao, Z.Q. A Highly Sensitive and Selective Electrochemical Biosensor for Direct Detection of MicroRNAs in Serum. Anal. Chem. 2013, 85, 4784–4789. [Google Scholar] [CrossRef]
- Rana, M.; Balcioglu, M.; Kovach, M.; Hizir, M.S.; Robertson, N.M.; Khan, I.; Yigit, M.V. Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction. Chem. Commun. 2016, 52, 3524–3527. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.X.; Chai, H.; Tang, Y.G.; Miao, P. Bright carbon nanodots for miRNA diagnostics coupled with concatenated hybridization chain reaction. Chem. Commun. 2020, 56, 1175–1178. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, C.F.; Zhao, C.S.; Ren, C.N.; Zhang, X.R. Catalytic hairpin assembly induced dual signal enhancement for rapid detection of miRNA using fluorescence light-up silver nanocluster. Anal. Chim. Acta 2019, 1084, 93–98. [Google Scholar] [CrossRef]
- Liu, J.T.; Du, P.; Zhang, J.; Shen, H.; Lei, J.P. Sensitive detection of intracellular microRNA based on a flowerlike vector with catalytic hairpin assembly. Chem. Commun. 2018, 54, 2550–2553. [Google Scholar] [CrossRef]
- Shi, C.; Liu, Q.; Ma, C.P.; Zhong, W.W. Exponential Strand-Displacement Amplification for Detection of MicroRNAs. Anal. Chem. 2014, 86, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.; Gui, G.F.; Zhuo, Y.; Chai, Y.Q.; Xiang, Y.; Yuan, R. Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection. Anal. Chem. 2015, 87, 6328–6334. [Google Scholar] [CrossRef]
- Neubacher, S.; Arenz, C. Rolling-Circle Amplification: Unshared Advantages in miRNA Detection. Chembiochem 2009, 10, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Gusev, Y.; Sparkowski, J.; Raghunathan, A.; Ferguson, H., Jr.; Montano, J.; Bogdan, N.; Schweitzer, B.; Wiltshire, S.; Kingsmore, S.F.; Maltzman, W.; et al. Rolling circle amplification: A new approach to increase sensitivity for immunohistochemistry and flow cytometry. Am. J. Pathol. 2001, 159, 63–69. [Google Scholar] [CrossRef]
- Zhuang, J.Y.; Lai, W.Q.; Chen, G.N.; Tang, D.P. A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation. Chem. Commun. 2014, 50, 2935–2938. [Google Scholar] [CrossRef]
- Breaker, R.R.; Joyce, G.F. A DNA enzyme that cleaves RNA. Chem. Biol. 1994, 1, 223–229. [Google Scholar] [CrossRef]
- Wang, F.; Elbaz, J.; Orbach, R.; Magen, N.; Willner, I. Amplified Analysis of DNA by the Autonomous Assembly of Polymers Consisting of DNAzyme Wires. J. Am. Chem. Soc. 2011, 133, 17149–17151. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Kim, D.-M.; Baek, A.; Chung, H.; Jung, W.; Kim, D.-E. Fluorescence-based detection of single-nucleotide changes in RNA using graphene oxide and DNAzyme. Chem. Commun. 2015, 51, 5641–5644. [Google Scholar] [CrossRef]
- Du, H.; Yang, P.; Hou, X.; Hou, X.D.; Chen, J.B. Accelerating DNA nanomotor by branched DNAzyme for ultrasensitive optical detection of thrombin. Microchem. J. 2018, 139, 260–267. [Google Scholar] [CrossRef]
- Mokany, E.; Bone, S.M.; Young, P.E.; Doan, T.B.; Todd, A.V. MNAzymes, a Versatile New Class of Nucleic Acid Enzymes That Can Function as Biosensors and Molecular Switches. J. Am. Chem. Soc. 2010, 132, 1051–1059. [Google Scholar] [CrossRef]
- Hanpanich, O.; Oyanagi, T.; Shimada, N.; Maruyama, A. Cationic copolymer-chaperoned DNAzyme sensor for microRNA detection. Biomaterials 2019, 225, 12. [Google Scholar] [CrossRef]
- Nedorezoya, D.D.; Fakhardo, A.F.; Molden, T.A.; Kolpashchikov, D.M. Deoxyribozyme-Based DNA Machines for Cancer Therapy. ChemBioChem 2020, 21, 607–611. [Google Scholar] [CrossRef]
- Xiang, L.; Zhang, F.; Chen, C.; Cai, C. A general scheme for fluorometric detection of multiple oligonucleotides by using RNA-cleaving DNAzymes: Application to the determination of microRNA-141 and H5N1 virus DNA. Microchim. Acta 2019, 186. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, Q.; Chen, Y.Q.; Liu, X.Q.; Wang, F.; Zhou, X. Amplified MicroRNA Detection and Intracellular Imaging Based on an Autonomous and Catalytic Assembly of DNAzyme. ACS Sens. 2019, 4, 110–117. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Zhang, X.; Li, Z.P.; Jiao, X.X.; Wang, Y.C.; Zhang, Y.L. Highly Sensitive Determination of microRNA Using Target-Primed and Branched Rolling-Circle Amplification. Angew. Chem. Int. Edit. 2009, 48, 3268–3272. [Google Scholar] [CrossRef]
- Li, R.Y.; Liu, Q.; Jin, Y.; Li, B.X. Sensitive colorimetric determination of microRNA let-7a through rolling circle amplification and a peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme. Microchim. Acta 2020, 187, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Wang, Y.; Liu, S.; Wang, C.L.; Liang, J.X.; Li, S.S.; Qu, X.N.; Zhang, R.F.; Yu, J.H.; Huang, J.D. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs. Analyst 2019, 144, 5245–5253. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Yu, S.S.; Shang, J.H.; Chen, Y.Y.; Wang, Q.; Liu, X.Q.; Wang, F.A. Construction of an Exonuclease III-Propelled Integrated DNAzyme Amplifier for Highly Efficient microRNA Detection and Intracellular Imaging with Ultralow Background. Anal. Chem. 2020, 92, 15069–15078. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence(5’-3’) |
---|---|
Padlock probe | pCTGATAAGCTACGAATGGCGTTATGCCTCAATTAGAAGTCTTATGCGAAAGCGTGACGGCTAATGGACTGCAGTCAACATCAGT |
MiR-21 | UAG CUU AUC AGA CUG AUG UUG A |
MiR-16 | UAG CAG CAC GUA AAU AUU GGC G |
Mut-miR-21 | UAG CUU AAC AGA CUG AUG UUG A |
H1 | TC AAT TAG A AAG CAC CCA TGT TAC TCT |
H2 | GAT ATC AGC GAT CTT AG TCT TATG |
Substrate | BHQ-1-AGA GTA TrAG GAT ATC-FAM |
Detection Strategy | LOD | R2 | Reference |
---|---|---|---|
RNA-cleaving DNAzymes | 0.2 nM | 0.996 | [32] |
RCA and CHA | 87 fM | 0.9908 | [24] |
Autonomous catalytic assembly of DNAzymes | 10 pM | 0.984 | [33] |
Target-primed and branched RCA | 10 fM | 0.9994 | [34] |
Peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme | 37 fM | 0.999 | [35] |
RCA and triple-helix molecular switch-actuation | 1.1 aM | 0.9997 | [36] |
Exonuclease III-propelled integrated DNAzyme | 100 fM | 0.998 | [37] |
RCA and multi-component nucleic acid enzymes | 4 pM | 0.9972 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Ouyang, P.; Yang, Y.; Qing, Y.; Han, J.; Shang, W.; Chen, Y.; Du, J. MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy. Biosensors 2021, 11, 222. https://doi.org/10.3390/bios11070222
Fang C, Ouyang P, Yang Y, Qing Y, Han J, Shang W, Chen Y, Du J. MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy. Biosensors. 2021; 11(7):222. https://doi.org/10.3390/bios11070222
Chicago/Turabian StyleFang, Chenxin, Ping Ouyang, Yuxing Yang, Yang Qing, Jialun Han, Wenyan Shang, Yubing Chen, and Jie Du. 2021. "MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy" Biosensors 11, no. 7: 222. https://doi.org/10.3390/bios11070222
APA StyleFang, C., Ouyang, P., Yang, Y., Qing, Y., Han, J., Shang, W., Chen, Y., & Du, J. (2021). MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy. Biosensors, 11(7), 222. https://doi.org/10.3390/bios11070222