Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk
Abstract
:1. Introduction
2. Cow’s Milk Properties and Antibiotic Behaviour
2.1. Raw Milk Composition
2.2. Binding Properties of Antibiotics
3. Chemical and Biological Properties of Tetracyclines
3.1. Mode of Action
3.2. Biotransformation, Excretion Routes and Withdrawal Time
3.3. MRL and Evidence of Presence in Milk
3.4. Persistence in the Environment
4. Existing Residue Test Methods
4.1. Commercially Available Screening Tests
4.1.1. Microbial Inhibition Test
4.1.2. Immune Receptor Tests
4.2. Laboratory-Based Analysis Techniques
5. Emerging Electrochemical Biosensors for Tetracycline Residues
5.1. Tetracycline Detection Strategies
5.1.1. Immunosensors
5.1.2. Enzyme-Based Sensors
5.1.3. Microbial Inhibition Sensors
5.1.4. Direct Electrochemical Detection Techniques
5.1.5. Molecularly Imprinted Polymer (MIP) Sensors
5.1.6. Aptasensors
5.2. Limitations of Existing Sensors and Future Needs
5.2.1. Specificity and Sensitivity
5.2.2. Sensor Cost
5.2.3. Sample Handling
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1. [Google Scholar] [CrossRef] [Green Version]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Hussani, S.A.K. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Edqvist, L.-E.; Pedersen, K.B. Antimicrobials as growth promoters: Resistance to common sense. In Late Lessons from Early Warnings: The Precautionary Principle 1896–2000; European Environment Agency: København, Denmark, 2000. [Google Scholar]
- Uberoi, E. UK Dairy Industry Statistics. 2020. Available online: https://commonslibrary.parliament.uk/research-briefings/sn02721/ (accessed on 3 February 2021).
- Quintanilla, P.; Cornacchini, M.; Hernando, M.I.; Molina, M.P.; Escriche, I. Impact of the presence of oxytetracycline residues in milk destined for the elaboration of dairy products: The specific case of mature goat cheese. Int. Dairy J. 2020, 101, 104595. [Google Scholar] [CrossRef]
- Cogan, T.M. Susceptibility of Cheese and Yoghurt Starter Bacteria to Antibiotics. 1972. Available online: http://aem.asm.org/ (accessed on 10 February 2021).
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Pawar, N.; Chopde, S.; Deshmukh, M. Interaction between some probiotics and Listeria monocytogenes in fermented milk products. J. Food Process. Technol. 2012, 10. [Google Scholar] [CrossRef]
- Albright, J.L.; Tuckey, S.L.; Woods, G.T. Antibiotics in Milk—A Review. J. Dairy Sci. 1961, 44, 779–807. [Google Scholar] [CrossRef]
- Kivirand, K.; Kagan, M.; Rinken, T. Biosensors for the detection of antibiotic residues in milk. In Biosensors—Micro and Nanoscale Applications; InTech: Rijeka, Croatia, 2015. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EU) No. 37/2010. 2010. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:015:0001:0072:EN:PDF (accessed on 15 December 2020).
- Ziv, G.; Sulman, F.G. Absorption of Antibiotics by the Bovine Udder. J. Dairy Sci. 1975, 58, 1637–1644. [Google Scholar] [CrossRef]
- Boisseau, J.; Moretain, J.P. Drug excretion by the mammary gland. In Veterinary Pharmacology and Toxicology; Springer: Amsterdam, The Netherlands, 1983; pp. 193–202. [Google Scholar] [CrossRef]
- EMEA. Commitee for Veterinary Medicinal Products Note for Guidance for the Determination of Withdrawal Periods for Milk, 2000. Available online: https://www.ema.europa.eu/en/determination-withdrawal-periods-milk (accessed on 9 December 2020).
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borriello, P.; Broadfoot, F.; Healey, K.; Neale, D.; Pickering, A.; Sabzikari, S. UK Veterinary Antibiotic Resistance and Sales Surveillance Report, 2020. Available online: www.gov.uk/government/organisations/veterinary-medicines-directorate (accessed on 29 April 2021).
- Food Standards Agency. Information and Guidance on the Testing of Milk for Antibiotic Residues; Food Standards Agency: London, UK, 2015. [Google Scholar]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M.N. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Causes and threats. Pharm. Ther. 2015, 4, 277–283. [Google Scholar]
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 1 December 2020).
- O’Neil, J. Report on Antimicrobial Resistance. 2016. Available online: https://amr-review.org (accessed on 4 February 2021).
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pateraki, M.; Fysarakis, K.; Sakkalis, V.; Spanoudakis, G.; Varlamis, I.; Maniadakis, M.; Lourakis, M.; Ioannidis, S.; Cummins, N.; Schuller, B.; et al. Biosensors and Internet of Things in smart healthcare applications: Challenges and opportunities. In Wearable and Implantable Medical Devices; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–53. [Google Scholar] [CrossRef] [Green Version]
- Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M.; Mishra, R.K.; Tang, X.; Marty, J.L. Detection of antibiotics in food: New achievements in the development of biosensors. Trends Anal. Chem. 2020, 127, 115883. [Google Scholar] [CrossRef]
- Bottari, F.; Blust, R.; de Wael, K. Bio(inspired) strategies for the electro-sensing of β-lactam antibiotics. Curr. Opin. Electrochem. 2018, 10, 136–142. [Google Scholar] [CrossRef]
- Gustavsson, E.; Sternesjö, Å. Biosensor analysis of β-lactams in milk: Comparison with microbiological, immunological, and receptor-based screening methods. J. AOAC Int. 2004, 87, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Mourad, G.; Bettache, G.; Medjekal, S. Composition and Nutritional Value of Raw Milk. 2014. Available online: https://www.researchgate.net/publication/278785108_Composition_and_nutritional_value_of_raw_milk (accessed on 21 October 2020).
- Factors Affecting the Composition of Milk from Dairy Cows. 1988. Available online: https://www.ncbi.nlm.nih.gov/books/NBK218193/ (accessed on 25 November 2020).
- Ozdemir, Z.; Tras, B.; Uney, K. Distribution of hydrophilic and lipophilic antibacterial drugs in skim milk, cream, and casein. J. Dairy Sci. 2018, 101, 10694–10702. [Google Scholar] [CrossRef]
- Veiga, R.P.; Paiva, J.A. Pharmacokinetics–pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit. Care 2018, 22, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Papich, M.G. Florfenicol. In Saunders Handbook of Veterinary Drugs; Elsevier: Amsterdam, The Netherlands, 2016; pp. 327–329. [Google Scholar] [CrossRef]
- Ziv, G.; Rasmussen, F. Distribution of Labeled Antibiotics in Different Components of Milk Following Intramammary and Intramuscular Administrations®. J. Dairy Sci. 1975. [Google Scholar] [CrossRef]
- Barza, M.; Brown, R.B.; Shanks, C.; Gamble, C.; Weinstein, L. Relation between lipophilicity and pharmacological behavior of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs. Antimicrob. Agents Chemother. 1975, 8, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 5, 256–265. [Google Scholar] [CrossRef] [Green Version]
- MacGibbon, A.K.H.; Taylor, M.W. Composition and Structure of Bovine Milk Lipids. In Advanced Dairy Chemistry; Springer: Boston, MA, USA, 2006; Volume 2. [Google Scholar]
- Kilara, A.; Vaghela, M.N. Whey proteins. In Proteins in Food Processing, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 93–126. [Google Scholar] [CrossRef]
- Murgiano, L.; Timperio, A.M.; Zolla, L.; Bongiorni, S.; Valentini, A.; Pariset, L. Comparison of Milk Fat Globule Membrane (MFGM) proteins of Chianina and Holstein cattle breed milk samples through proteomics methods. Nutrients 2009, 1, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Bär, C.; Mathis, D.; Neuhaus, P.; Dürr, D.; Bisig, W.; Egger, L.; Portmann, R. Protein profile of dairy products: Simultaneous quantification of twenty bovine milk proteins. Int. Dairy J. 2019, 9, 167–175. [Google Scholar] [CrossRef]
- PubChem. Beta-Lactose. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Lactose (accessed on 9 December 2020).
- PubChem. D-Glucose. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/D-Glucose (accessed on 9 December 2020).
- PubChem. Dilinoleoylpalmitoylglycerol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/129854299 (accessed on 9 December 2020).
- PubChem. 1-Palmitoyl-2-linoleoylphosphatidylcholine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1-Palmitoyl-2-linoleoylphosphatidylcholine (accessed on 9 December 2020).
- Holland, J.W. Post-Translational Modifications of Caseins. In Milk Proteins; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 107–132. [Google Scholar] [CrossRef]
- Fenelon, M.A.; Hickey, R.M.; Buggy, A.; McCarthy, N.; Murphy, E.G. Whey proteins in infant formula. In Whey Proteins: From Milk to Medicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 439–494. [Google Scholar] [CrossRef]
- Roberts, M.C. Tetracycline therapy: Update. Clin. Infect. Dis. 2003, 3, 462–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papich, M.G. Oxytetracycline. In Saunders Handbook of Veterinary Drugs; Elsevier: Amsterdam, The Netherlands, 2016; pp. 595–598. [Google Scholar] [CrossRef]
- Siljanoski, A.; Ciglarič, R.; Pezdir, T.; Lainšček, P.R.; Dolenc, J.; Starič, J.; Šinigoj-Gačnik, K. Detection of tetracycline and other antimicrobial residues in milk from cows with clinical mastitis treated by combination therapy. J. Dairy Res. 2018, 8, 321–326. [Google Scholar] [CrossRef]
- Chopra, I. Glycylcyclines—Third generation tetracycline analogues. Exp. Opin. Investig. Drugs 1994, 3, 191–193. [Google Scholar] [CrossRef]
- European Medicines Agency. Use of Glycylcyclines in Animals in the European Union: Development of Resistance and Possible Impact on Human and Animal Health. 2013. Available online: www.ema.europa.eu (accessed on 9 November 2020).
- Nelson, M.L.; Levy, S.B. The history of the tetracyclines. Ann. N. Y. Acad. Sci. 2011, 1241, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, A.S.; Sierra, T.; Domini, C.E.; Lista, A.G.; Crevillen, A.G.; Escarpa, A. Electrochemically Reduced Graphene Oxide-Based Screen-Printed Electrodes for Total Tetracycline Determination by Adsorptive Transfer Stripping Differential Pulse Voltammetry. Sensors 2019, 20, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnappinger, D.; Hillen, W. Tetracyclines: Antibiotic action, uptake, and resistance mechanisms. Arch. Microbiol. 1996, 165. [Google Scholar] [CrossRef] [PubMed]
- Vojtova, V.; Urbanek, K. Pharmacokinetics of tetracyclines and glycylcyclines. Klin. Mikrobiol. Infekc. Lek. 2009, 15, 17–21. [Google Scholar]
- Cyclo Spray, Product information, Statement on the Active Substance(s) and Other Ingredient(s). Available online: http://www.baltivet.com/files/8813/9325/0464/Brochure_Cyclo_Spray.pdf (accessed on 9 December 2020).
- Pfizer Laboratories Ltd. Terramycin LA, Product Information. Available online: https://www.farmacy.co.uk/terramycin-la-200mgml-injection-100ml/p501 (accessed on 9 December 2020).
- Commitee for Veterinary Medicinal Products Oxytetracycline, Tetracycline, Chlortetracycline Summary Report (3); The European Agency for the Evaluation of Medicinal Products: Amsterdam, The Netherlands, 1995.
- FDA. CFR—Code of Federal Regulations Title 21; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Kurjogi, M.; Mohammad, Y.H.I.; Alghamdi, S.; Abdelrahman, M.; Satapute, P.; Jogaiah, S. Detection and determination of stability of the antibiotic residues in cow’s milk. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed]
- Kellnerová, E.; Navrátilová, P.; Borkovcová, I. Effect of pasteurization on the residues of tetracyclines in milk. Acta Vet. Brno 2014, 83, S21–S26. [Google Scholar] [CrossRef]
- Gajda, A.; Nowacka-Kozak, E.; Gbylik-Sikorska, M.; Posyniak, A. Tetracycline antibiotics transfer from contaminated milk to dairy products and the effect of the skimming step and pasteurisation process on residue concentrations. Food Addit. Contam. Part A 2018, 35, 66–76. [Google Scholar] [CrossRef]
- Aalipour, F.; Mirlohi, M.; Jalali, M.; Azadbakht, L. Dietary exposure to tetracycline residues through milk consumption in Iran. J. Environ. Health Sci. Eng. 2015, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navrátilová, P.; Borkovcová, I.; Dračková, M.; Janštová, B.; Vorlová, L. Occurrence of Tetracycline, Chlortetracyclin, and Oxytetracycline Residues in Raw Cow’s Milk. Czech J. Food Sci. 2009, 27, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Nemati, M.; Abbasi, M.M.; Babaei, H.; Ansarin, M.; Nourdadgar, A. Simultaneous Determination of Tetracyclines Residues in Bovine Milk Samples by Solid Phase Extraction and HPLC-FL Method. Adv. Pharm. Bull. 2011, 1, 34–39. [Google Scholar] [CrossRef]
- Bahmani, K.; Shahbazi, Y.; Nikousefat, Z. Monitoring and risk assessment of tetracycline residues in foods of animal origin. Food Sci. Biotechnol. 2020, 29, 441–448. [Google Scholar] [CrossRef]
- Das, Y.K.; Yavuz, O.; Atmaca, E.; Aksoy, A. Tetracycline antibiotics in raw cow’s milk produced in Samsun Province, Turkey. Fresenius Environ. Bull. 2019, 28, 5982–5988. [Google Scholar]
- Aga, D.S.; O’connor, S.; Ensley, S.; Payero, J.Ä.O.; Snow, D.; Tarkalson, D. Determination of the Persistence of Tetracycline Antibiotics and Their Degradates in Manure-Amended Soil Using Enzyme-Linked Immunosorbent Assay and Liquid Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2005. [Google Scholar] [CrossRef]
- Hamscher, G.; Sczesny, S.; Höper, H.; Nau, H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem. 2002, 74, 1509–1518. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Carlotti, B.; Cesaretti, A.; Elisei, F. Complexes of tetracyclines with divalent metal cations investigated by stationary and femtosecond-pulsed techniques. Phys. Chem. Chem. Phys. 2012, 14, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Hartman, A.B.; Essiet, I.I.; Isenbarger, D.W.; Lindler, L.E. Epidemiology of tetracycline resistance determinants in Shigella spp. and enteroinvasive Escherichia coli: Characterization and dissemination of tet(A)-1. J. Clin. Microbiol. 2003, 41, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Keen, P.L.; Montforts, M.M.M. Antimicrobial Resistance in the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Adesoji, A.T.; Ogunjobi, A.A.; Olatoye, I.O.; Douglas, D.R. Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baghani, A.; Mesdaghinia, A.; Rafieiyan, M.; Dallal, M.M.S.; Douraghi, M. Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA. J. Immunoass. Immunochem. 2019, 4, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.; Ngoma, L.; Adetunji, M.; Mwanza, M. Evaluation of antibiotic residues in raw meat using different analytical methods. Antibiotics 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- ISO. Milk and Milk Products—Determination of Antimicrobial Residues—Tube Diffusion Test. Available online: https://iso.org/standard/43819.html (accessed on 11 February 2021).
- ISO. Milk and Milk Products—Guidelines for the Standardized Description of Immunoassays or Receptor Assays for the Detection of Antimicrobial Residues. Available online: https://www.iso.org/standard/33421.html (accessed on 11 February 2021).
- Hennart, S.L.A.; Faragher, J.; Boison, J.; Agin, J.; Mitchell, M. Validation of the delvotest SP NT DA. J. AOAC Int. 2012, 95, 252–260. [Google Scholar] [CrossRef]
- Carlsson, Å.; Björck, L. Charm test II for confirmation of inhibitory substances detected by different microbial assays in herd milk. J. Food Prot. 1991, 54. [Google Scholar] [CrossRef] [PubMed]
- Euber, J.R.; Brunner, J.R. Determination of Lactose in Milk Products by High-Performance Liquid Chromatography. J. Dairy Sci. 1979, 62, 685–690. [Google Scholar] [CrossRef]
- Lee, Y.H.; Mutharasan, R. Biosensors. In Sensor Technology Handbook; Elsevier Inc.: Amsterdam, The Netherlands, 2005; pp. 161–180. [Google Scholar] [CrossRef]
- Ping, J.; Wang, Y.; Fan, K.; Tang, W.; Wu, J.; Ying, Y. High-performance flexible potentiometric sensing devices using free-standing graphene paper. J. Mater. Chem. B 2013, 1, 4781–4791. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Simões, F.R.; Xavier, M.G. Electrochemical Sensors. In Nanoscience and Its Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 155–178. [Google Scholar] [CrossRef]
- Yunus, S.; Jonas, A.M.; Lakard, B. Potentiometric Biosensors. In Encyclopedia of Biophysics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Sadeghi, S.J. Amperometric Biosensors. In Encyclopedia of Biophysics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Kim, M.; Iezzi, R.; Shim, B.S.; Martin, D.C. Impedimetric Biosensors for Detecting Vascular Endothelial Growth Factor (VEGF) Based on Poly(3,4-ethylene dioxythiophene) (PEDOT)/Gold Nanoparticle (Au NP) Composites. Front. Chem. 2019, 7. [Google Scholar] [CrossRef]
- Besharati, M.; Tabrizi, M.A.; Molaabasi, F.; Saber, R.; Shamsipur, M.; Hamedi, J.; Hosseinkhani, S. Novel enzyme-based electrochemical and colorimetric biosensors for tetracycline monitoring in milk. Biotechnol. Appl. Biochem. 2020, bab.2078. [Google Scholar] [CrossRef]
- Besharati, M.; Hamedi, J.; Hosseinkhani, S.; Saber, R. A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection. Bioelectrochemistry 2019, 128, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, G.E.; Carpico, G.; Coni, E. Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk. Anal. Chim. Acta 2004, 520, 13–18. [Google Scholar] [CrossRef]
- Conzuelo, F.; Campuzano, S.; Gamella, M.; Pinacho, D.G.; Reviejo, A.J.; Marco, M.P.; Pingarrón, J.M. Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens. Bioelectron. 2013, 50, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Conzuelo, F.; Gamella, M.; Campuzano, S.; Reviejo, A.J.; Pingarrón, J.M. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Anal. Chim. Acta 2012, 737, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Que, X.; Chen, X.; Fu, L.; Lai, W.; Zhuang, J.; Chen, G.; Tang, D. Platinum-catalyzed hydrogen evolution reaction for sensitive electrochemical immunoassay of tetracycline residues. J. Electroanal. Chem. 2013, 704, 111–117. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, S.; Hu, Y.; Li, Z.; Luo, F.; He, Z. Electrochemical Immunosensor Based on the Chitosan-Magnetic Nanoparticles for Detection of Tetracycline. Food Anal. Methods 2016, 9, 2972–2978. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, H.; Quan, X.; Tan, F. Amperometric Sensor for Tetracycline Determination Based on Molecularly Imprinted Technique. Proc. Environ. Sci. 2013, 18, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Bougrini, M.; Florea, A.; Cristea, C.; Sandulescu, R.; Vocanson, F.; Errachid, A.; Bouchikhi, B.; el Bari, N.; Jaffrezic-Renault, N. Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey. Food Control 2016, 59, 424–429. [Google Scholar] [CrossRef]
- Rad, A.O.; Azadbakht, A. An aptamer embedded in a molecularly imprinted polymer for impedimetric determination of tetracycline. Microchim. Acta 2019, 186, 56. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Jiang, X.; Liu, S.; Yang, M. Sensitive and selective molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for doxycycline hyclate determination. Chin. Chem. Lett. 2019, 31, 185–188. [Google Scholar] [CrossRef]
- Devkota, L.; Nguyen, L.T.; Vu, T.T.; Piro, B. Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface. Electrochim. Acta 2018, 270, 535–542. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.; Quan, X.; Chen, S. Electrochemical Determination of Tetracycline Using Molecularly Imprinted Polymer Modified Carbon Nanotube-Gold Nanoparticles Electrode. Electroanalysis 2011, 23, 1863–1869. [Google Scholar] [CrossRef]
- Mohammad-Razdari, A.; Ghasemi-Varnamkhasti, M.; Rostami, S.; Izadi, Z.; Ensafi, A.A.; Siadat, M. Development of an electrochemical biosensor for impedimetric detection of tetracycline in milk. J. Food Sci. Technol. 2020, 57, 4697–4706. [Google Scholar] [CrossRef]
- Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Abnous, K. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens. Bioelectron. 2016, 85, 509–514. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Wu, Y.; Jia, S.; Fan, T.; Zhang, Z.; Zhang, C. Fast determination of the tetracyclines in milk samples by the aptamer biosensor. Analyst 2010, 135, 2706–2710. [Google Scholar] [CrossRef]
- Le, T.H.; Pham, V.P.; La, T.H.; Phan, T.B.; Le, Q.H. Electrochemical aptasensor for detecting tetracycline in milk. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 15008. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Kim, Y.S.; Niazi, J.H.; Gu, M.B. Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst. Eng. 2010, 33, 31–37. [Google Scholar] [CrossRef]
- Wu, Y.H.; Bi, H.; Ning, G.; Xu, Z.G.; Liu, G.Q.; Wang, Y.H.; Zhao, Y.L. Cyclodextrin subject-object recognition-based aptamer sensor for sensitive and selective detection of tetracycline. J. Solid State Electrochem. 2020, 24, 2365–2372. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, W.; Guo, Y.; Wang, X.; Zhang, F.; Yu, L.; Guo, C.; Fang, G. Sensitive and selective electrochemical aptasensor via diazonium-coupling reaction for label-free determination of oxytetracycline in milk samples. Sens. Actuat. Rep. 2020, 2, 100009. [Google Scholar] [CrossRef]
- Yildirim-Tirgil, N.; Lee, J.; Cho, H.; Lee, H.; Somu, S.; Busnaina, A.; Gu, A.Z. A SWCNT based aptasensor system for antibiotic oxytetracycline detection in water samples. Anal. Methods 2019, 11, 2692–2699. [Google Scholar] [CrossRef]
- Zhou, L.; Li, D.J.; Gai, L.; Wang, J.P.; Li, Y.B. Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens. Actuat. B Chem. 2012, 162, 201–208. [Google Scholar] [CrossRef]
- Shen, G.; Guo, Y.; Sun, X.; Wang, X. Electrochemical Aptasensor Based on Prussian Blue-Chitosan-Glutaraldehyde for the Sensitive Determination of Tetracycline. Nano Micro Lett. 2014, 6, 143–152. [Google Scholar] [CrossRef]
- Benvidi, A.; Tezerjani, M.D.; Moshtaghiun, S.M.; Mazloum-Ardakani, M. An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchim. Acta 2016, 183, 1797–1804. [Google Scholar] [CrossRef]
- Zhan, X.; Hu, G.; Wagberg, T.; Zhan, S.; Xu, H.; Zhou, P. Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim. Acta 2016, 183, 723–729. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, P.; Xu, J.; le Li, L.; Yang, L.; Liu, X.; Liu, S.; Zhou, Y. Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline. Sens. Actuat. B Chem. 2018, 258, 906–912. [Google Scholar] [CrossRef]
- Pollap, A.; Kochana, J. Electrochemical Immunosensors for Antibiotic Detection. Biosensors 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Regenmortel, M.H.V.; Azimzadeh, A. Determination of antibody affinity. J. Immunoassay 2000, 21, 211–234. [Google Scholar] [CrossRef]
- Ferri, S.; Kojima, K.; Sode, K. Review of glucose oxidases and glucose dehydrogenases: A bird’s eye view of glucose sensing enzymes. J. Diabetes Sci. Technol. 2011, 1068–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkiewicz, K.; Davlieva, M.; Wu, G.; Shamoo, Y. Crystal structure of bacteroides thetaiotaomicron TetX2: A tetracycline degrading monooxygenase at 2.8 Å resolution. Proteins 2011, 79, 2335–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, Y.; Wang, N.; Li, C.; Guo, X.; Lu, A. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics 2020, 9, 787. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, W.; Mulchandani, A. Microbial biosensors. Anal. Chim. Acta 2006, 568, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, F.D.; Titoiu, A.M.; Marty, J.L.; Vasilescu, A. Detection of antibiotics and evaluation of antibacterial activity with screen-printed electrodes. Sensors 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Allahverdiyeva, S.; Yardım, Y.; Şentürk, Z. Electrooxidation of tetracycline antibiotic demeclocycline at unmodified boron-doped diamond electrode and its enhancement determination in surfactant-containing media. Talanta 2021, 223, 121695. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Lomillo, M.; Dominguez-Renedo, O. Screen-Printed Biosensors in Drug Analysis. Curr. Pharm. Anal. 2017, 13, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Freire, R.S.; Pessoa, C.A.; Mello, L.D.; Kubota, L.T. Direct electron transfer: An approach for electrochemical biosensors with higher selectivity and sensitivity. J. Braz. Chem. Soc. 2003, 14, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Asadollahi-Baboli, M.; Mani-Varnosfaderani, A. Rapid and simultaneous determination of tetracycline and cefixime antibiotics by mean of gold nanoparticles-screen printed gold electrode and chemometrics tools. Measurement 2014, 47, 145–149. [Google Scholar] [CrossRef]
- Anderson, C.R.; Rupp, H.S.; Wu, W.H. Complexities in tetracycline analysis—Chemistry, matrix extraction, cleanup, and liquid chromatography. J. Chromatogr. A 2005, 1075, 23–32. [Google Scholar] [CrossRef]
- Filik, H.; Avan, A.A.; Aydar, S.; Ozyurt, D.; Demirata, B. Determination of Tetracycline on the Surface of a High- Performance Graphene Modified Screen-Printed Carbon Electrode in Milk and Honey Samples. Curr. Nanosci. 2016, 12, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Zhou, Y.; Jin, H.; Jing, T.; Zhou, T.; Hao, Q.; Zhou, Y.; Mei, S.; Lee, Y.I. Selective and sensitive determination of erythromycin in honey and dairy products by molecularly imprinted polymers based electrochemical sensor. Microchem. J. 2014, 116, 183–190. [Google Scholar] [CrossRef]
- Gui, R.; Guo, H.; Jin, H. Preparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymers. Nanoscale Adv. 2019, 1, 3325–3363. [Google Scholar] [CrossRef] [Green Version]
- Piletsky, S.A.; Turner, A.P.F. Electrochemical Sensors Based on Molecularly Imprinted Polymers. Electroanalysis 2002, 14, 317–323. [Google Scholar] [CrossRef]
- Clarindo, J.E.S.; Viana, R.B.; Cervini, P.; Silva, A.B.F.; Cavalheiro, E.T.G. Determination of Tetracycline Using a Graphite-Polyurethane Composite Electrode Modified with a Molecularly Imprinted Polymer. Anal. Lett. 2020, 53, 1932–1955. [Google Scholar] [CrossRef]
- Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens. Bioelectron. 2017, 91, 504–514. [Google Scholar] [CrossRef]
- Kaur, H. Recent developments in cell-SELEX technology for aptamer selection. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2323–2329. [Google Scholar] [CrossRef] [PubMed]
- Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat. 2013, 5, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Hianik, T.; Ostatná, V.; Sonlajtnerova, M.; Grman, I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 2007, 70, 127–133. [Google Scholar] [CrossRef]
- Li, F.; Yu, Z.; Han, X.; Lai, R.Y. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal. Chim. Acta 2019, 1051, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Mehennaoui, S.; Poorahong, S.; Jimenez, G.C.; Siaj, M. Selection of high affinity aptamer-ligand for dexamethasone and its electrochemical biosensor. Sci. Rep. 2019, 9, 6600. [Google Scholar] [CrossRef] [PubMed]
- Sadana, A.; Sadana, N. Biosensor Performance Parameters and their Enhancement. In Fractal Analysis of the Binding and Dissociation Kinetics for Different Analytes on Biosensor Surfaces; Elsevier: Amsterdam, The Netherlands, 2008; pp. 19–53. [Google Scholar] [CrossRef]
- Alsaiari, N.S.; Katubi, K.M.M.; Alzahrani, F.M.; Siddeeg, S.M.; Tahoon, M.A. The application of nanomaterials for the electrochemical detection of antibiotics: A review. Micromachines 2021, 12, 308. [Google Scholar] [CrossRef]
- Kling, A.; Chatelle, C.; Armbrecht, L.; Qelibari, E.; Kieninger, J.; Dincer, C.; Weber, W.; Urban, G. Multianalyte Antibiotic Detection on an Electrochemical Microfluidic Platform. Anal. Chem. 2016, 88, 10036–10043. [Google Scholar] [CrossRef]
- Ng, H.Y.; Lee, W.C.; Kung, C.t.; Li, L.C.; Lee, C.t.; Fu, L.M. Recent advances in microfluidic devices for contamination detection and quality inspection of milk. Micromachines 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Li, B.R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2020, 145, 1110–1120. [Google Scholar] [CrossRef]
Fraction of Milk | Content (g/100 g Milk) | Main Constituents | Antibiotics Likely to Concentrate | Reference |
---|---|---|---|---|
Water | 87.2 | - | oxytetracycline | [30,32,33] |
chlortetracycline | ||||
benzylpenicillin 1 | ||||
amoxicillin 2 | ||||
sulfadimethoxine 3 | ||||
ciprofloxacin 4 | ||||
Carbohydrates | 4.9 | Lactose | - | [30] |
Monosaccharide | ||||
Sugar phosphates | ||||
Oligosaccharides | ||||
Fats | 3.7 | Triglycerides Phospholipids | tetracycline | [30,32,34,35,36] |
doxycycline | ||||
tylosin 5 | ||||
aminoglycosides | ||||
thiamphenicol | ||||
Proteins | 3.5 | Casein Whey Fat globule membrane | chlortetracycline | [30,32,35,37] |
tetracycline | ||||
doxycycline | ||||
tylosin 5 | ||||
Minerals | 0.72 | Ca, Na, Mg, P, Cl, K | - | [30] |
Constituent | Molecular Weight (g/mol) | Reference |
---|---|---|
Lactose | 342.3 | [42] |
Glucose | 180.2 | [43] |
Triacylglycerol | 855.4 | [44] |
Lecithin | 758.1 | [45] |
k casein | 18 974 | [46] |
α-lactoglobulin | 14 178 | [47] |
Active Ingredient | Molecular Formula | Molecular Weight (g/mol) | Solubility (mg/L) at 25 °C |
---|---|---|---|
Chlortetracycline | C22H23ClN2O8 | 478.9 | ~500 |
Oxytetracycline | C22H24N2O9 | 460.4 | 312 |
Tetracycline | C22H24N2O8 | 444.4 | 231 |
Doxycycline | C22H24N2O8 | 444.4 | 50 000 |
Bioreceptor | Working Electrode Material | Selectivity | Detection Method | Limit of Detection | Linearity Range | Response Time | Reference |
---|---|---|---|---|---|---|---|
Enzyme-based sensors | |||||||
NAD(P)H-dependent TetX2 enzyme | Nano-porous glassy carbon | TC | amperometric | 40 nM | 0.1–0.8 µM | - | [90] |
TetX2 monooxygenase enzyme | Glassy carbon | TC | amperometric | 18 nM | 0.5–5 µM | ≤60 min | [91] |
Microbial sensors | |||||||
Escherichia coli | RE and CE galvanic cell | TC, OTC, CTC | potentiometric | ≤25 µg/L | - | 120 min | [92] |
Immunosensors | |||||||
Anti-TC polyclonal sheep antibody on protein-G-MBs | Dual screen-printed carbon | TC | amperometric | 0.858 µg/L | 10−3–10−4 µg/L | 30 min | [93] |
Anti-TC polyclonal sheep antibody on protein-G-MBs | Screen-printed carbon | TC OTC CTC DC | amperometric | 8.9 µg/L 1.2 µg/L 66.8 µg/L 0.7 µg/L | 17.8–189.6 µg/L 4.0 #x2013;242.3 µg/L 144.2–2001.9 µg/L 2.6–234.9 µg/L | 30 min | [94] |
Anti-TC monoclonal rabbit antibody | * Gold modified with PtGN | TC | amperometric | 0.006 µg/L | 0.05–100 µg/L | - | [95] |
Anti-TC monoclonal antibody | * Gold modified with MNPs | TC | amperometric | 0.0321 µg/L | 0.08–0.1 µg/L | 20 min | [96] |
Molecularly Imprinted Polymer sensors | |||||||
MAA-AIBN MIP | Pt/Ti | TC | amperometric | 26 µg/L | 0.1–10 mg/L | - | [97] |
* AuNPs added to p-aminothiophenol MIP | MMOF modified gold | TC | potentiometric | 0.22 fM | 224 fM–22.4 nM | 30 min | [98] |
Dopamine MIP and TC-aptamer | * Glassy carbon modified with AuNPs | TC | impedimetric | 144 fM | 0.5–100 nM | 45 min | [99] |
o-Phenylenediamine MIPs | * MWGCNTs | DC | amperometric | 1.3 × 10−2 μM | 0.05–0.5 μM | 15 min | [100] |
MIP pyrrole | * Screen printed carbon modified with AuNPs | TC | potentiometric | 0.65 µM | 1–20 µM | - | [101] |
MAA-MIPs | * MWGCNTs modified with AuNPs | TC | amperometric | 0.04 mg/L | 0.1–40 mg/L | - | [102] |
Aptasensors | |||||||
39-mer thiolated TC-binding aptamer | * Pencil graphite modified with AuNPs/RGO | TC | impedimetric | 3 × 10−17 M | 10−16–10−6 M | 90 min | [103] |
M-shaped aptamer (Apt-CSs) with Exo I | Gold | TC | amperometric | 0.74 nM | 1.5 nM–3.5 µM | - | [104] |
TC-aptamer | Glassy carbon | TC, OTC | amperometric | 1 µg/L | 0.1–100 µg/L | 5 min | [105] |
TC-aptamer | Gold | TC | impedimetric | 10 µg/L | 10–3000 µg/L | 15 min | [106] |
ssDNA aptamer | Screen-printed gold | TC | amperometric | 10 nM | 10 nM–10 µM | - | [107] |
β-cyclodextrin-aptamer | Gold | TC | impedimetric | 0.008 nM | 0.01–100 nM | - | [108] |
Amino modified aptamer | Glassy carbon | OTC | impedimetric | 2.29 × 10−10 g/mL | 10−9–10−4 g/mL | 60 min | [109] |
ssDNA aptamer | Single walled carbon nanotube | OTC | amperometric | 1.125 µg/L | 10–75 µg/L | 10 min | [110] |
TC-aptamer and multi-walled carbon nanotubes | * Glassy carbon modified with MWCNTs | TC | amperometric | 5 nM | 10−8–10−5 M | 30 min | [111] |
TC-aptamer | * Glassy carbon modified with PB-CS-GA system and AuNPs | TC | amperometric | 0.32 nM | 10−9–10−2 M | - | [112] |
TC-aptamer | * Glassy carbon modified with graphene oxide nanosheets | TC | impedimetric | 29 fM | 0.1 pM–10 µM | 50 min | [113] |
TC-aptamer | * rGo-Fe3O4/sodium alginate modified screen-printed carbon | TC | amperometric | 0.6 nM | 1 nM–5 µM | - | [114] |
TC-aptamer and bio-cDNA aptamer | * Glassy carbon modified with MoS2-TiO2@Au composite | TC | amperometric | 0.05 nM | 0.15 nM–6.0 × 10−6 M | 80 min | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raykova, M.R.; Corrigan, D.K.; Holdsworth, M.; Henriquez, F.L.; Ward, A.C. Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk. Biosensors 2021, 11, 232. https://doi.org/10.3390/bios11070232
Raykova MR, Corrigan DK, Holdsworth M, Henriquez FL, Ward AC. Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk. Biosensors. 2021; 11(7):232. https://doi.org/10.3390/bios11070232
Chicago/Turabian StyleRaykova, Magdalena R., Damion K. Corrigan, Morag Holdsworth, Fiona L. Henriquez, and Andrew C. Ward. 2021. "Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk" Biosensors 11, no. 7: 232. https://doi.org/10.3390/bios11070232
APA StyleRaykova, M. R., Corrigan, D. K., Holdsworth, M., Henriquez, F. L., & Ward, A. C. (2021). Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk. Biosensors, 11(7), 232. https://doi.org/10.3390/bios11070232