Comprehensive Review Tapered Optical Fiber Configurations for Sensing Application: Trend and Challenges
Abstract
:1. Introduction
2. Background
3. Overview of Tapered Fiber
4. Taxonomy of Literature Review on Tapered Optic Fiber
4.1. Based on Fiber Bragg Grating (FBG)
4.1.1. Hybrid S-Taper/FBG Structure
4.1.2. Cascaded S Fiber Taper/FBG Structures
4.1.3. Fabry–Perot/Tapered FBG
4.1.4. Long Tapered Fiber/Array of FBG
4.2. Based on Long-Period Fiber Grating (LPFG)
4.3. Based on Mach–Zehnder Interferometer (MZI)
4.3.1. Taper with a Single Cavity
4.3.2. Taper with Double Air Cavities
4.3.3. Taper with Single Air Cavity/Spot
4.3.4. Taper with Single Air Cavity/Channel
4.4. Based on Photonic Crystals Fiber (PCF)
4.5. Based on Surface Plasmon Resonance (SPR)
4.6. Based on Multi-Taper Devices
4.7. Based on Fiber Loop Ring-Down (FLRD) Technology
4.8. Based on Optical Tweezers
Tapered Method | Taper Length | Sensitivity | RI Scale OR Wavelength Scale | Waist Diameter | Publishing | Application | Ref | |
---|---|---|---|---|---|---|---|---|
Quantity | Quality | |||||||
FBG | 100 μm | 0.90, −38.49 pm/MPa 12.03 pm/°C | 0.7250, 0.9980 | 30 μm | ✓ | ✓ | Temperature and pressure | [64] |
FBG | 10 mm | 1129.44 pm/με −54.58 pm/°C | NA | 90 μm | ✓ | ✓ | Temperature and strain | [70] |
FBG | 800 μm 750 μm | 459.974 nm/RIU 420.781 nm/RIU | 1.3540–1.3810 | 60 μm | × | ✓ | Biological, medical, and chemical | [63] |
FBG | 780 μm | 269.76 dB/RIU | 1.3330–1.4060 | 54 μm | × | ✓ | Temperature | [62] |
LPFG | 619.24 μm | 45.87 pm/°C −52.57 nm/RIU | 1.33–1.37 | 44.81 μm | × | ✓ | Temperature | [73] |
LPFG | 730 μm | 8188 nm/RIU | 1.33–1.34 | 12 μm | × | ✓ | Biological and chemical | [75] |
MZI | ∼35.7 μm | ∼8239 pm/MPa 0.0055 MPa/°C | 1.3241–1.3280 | 24 μm | ✓ | ✓ | Temperature and pressure | [82] |
MZI | 350 μm 200 μm | 28 nm/vol | 1.3645 | 55 μm | × | ✓ | Ethanol concentration | [87] |
MZI | 625 mm | 213.235–215.294 nm/RIU 0.089 and 0.094 nm/°C | 0.089 | 65 mm | × | × | Temperature | [90] |
LPFG | 2.3 mm 2.5 mm | 1.82 pm/με–8.17 pm/με 47.9 pm/°C and 65 pm/°C | Wavelength shifting 1539.4 nm to 1541.2 nm, | 62.5 mm | × | × | Temperature and strain | [76] |
MZI | 4 mm | ∼4202 nm/RIU 41 pm/°C | 1.3241–1.3280 | 95 μm 60 μm | ✓ | ✓ | Temperature | [85] |
SPR | 1.25 mm | 3.2 × 105 RIU | 1.333–1.403 | 48 μm | × | ✓ | Biochemical and biomolecular | [105] |
SPR | 25 mm | 18 nm/RIU | 1.3324–1.4254 | 15 μm | × | × | Biological and chemical | [106] |
PCF | ∼2 cm | 1600 nm/RIU | 1.3333–1.3577 | 61 μm top 49 μm mid 30 μm bottom | ✓ | ✓ | Biochemical and biomolecular | [96] |
PCF | 29 mm | 1529 nm/RIU | 1.3355–1.413 | 71.7 μm | ✓ | ✓ | Environments, biomolecules | [97] |
Multi- devices | 550 μm | 261.9 nm/RIU | 1.3333–1.3737 | 52 μm | ✓ | ✓ | Biological and chemical | [109] |
Multi- devices | 17.8 mm | −342.815 dB/RIU | 1.33–1.37 | 29.2 μm | ✓ | ✓ | Biochemical and environments | [111] |
Loop ring-down | 8 mm | 0.045 ns−1RIU−1 | 1.3347–1.3721 | 17 μm | ✓ | ✓ | Medical pharmaceuticals, industrial fluids, photochemical plastics, and food industry | [115] |
Loop ring-down | 795 μm | −3128.954 μs/RIU | 3330–1.3682 | 65 μm | ✓ | ✓ | Biochemistry | [114] |
Loop ring-down | 782 μm | −388.581 μs/RIU | 1.335–1.375 | 28 μm | ✓ | ✓ | Industrial processing and bio/chemical | [113] |
Multi- devices | 3 mm | 500.6 nm/RIU 319.3 nm/RIU | 1.333 to 1.411 | 17 μm | ✓ | ✓ | Chemical and biological | [110] |
Optical tweezer | 200 μm 380 μm | NA | NA | 1 μm 3.3 μm | ✓ | ✓ | Particle and single-cell microscopy | [122] |
Optical tweezer | 20 μm | NA | 1.33–1.40 | 2.5 μm 3.7 μm | × | × | Biomedical | [119] |
5. Opportunities and Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton, J. Wellbeing and the Natural Environment: A Brief Overview of the Evidence; University of Bath: Bath, UK, 2007; pp. 1–53. [Google Scholar]
- Joe, H.E.; Yun, H.; Jo, S.H.; Jun, M.B.G.; Min, B.K. A review on optical fiber sensors for environmental monitoring. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 173–191. [Google Scholar] [CrossRef]
- Song, H.; Pei, H.; Zhu, H. Monitoring of tunnel excavation based on the fiber Bragg grating sensing technology. Meas. J. Int. Meas. Confed. 2021, 169, 108334. [Google Scholar] [CrossRef]
- Guo, X.; Wang, B.; Wang, Z.; Yu, W.; Ma, Z.; Yang, T. Application of the Microclamped Fiber Bragg Grating (FBG) Sensor in Rock Bolt Support Quality Monitoring. Adv. Civ. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Sahota, J.K.; Gupta, N.; Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020, 59, 1. [Google Scholar] [CrossRef]
- Wang, J.N.; Luo, C.Y. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity. Sensors 2012, 12, 4578–4593. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Biswas, P.; Chiavaioli, F.; Dey, T.K.; Basumallick, N.; Trono, C.; Giannetti, A.; Tombelli, S.; Baldini, F.; Bandyopadhyay, S. Long-period fiber grating: A specific design for biosensing applications. Appl. Opt. 2017, 56, 9846. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.W.; Wang, Q. Mini review: Recent advances in long period fiber grating biological and chemical sensors. Instrum. Sci. Technol. 2019, 47, 140–169. [Google Scholar] [CrossRef]
- Saghaei, H.; Elyasi, P.; Karimzadeh, R. Design, fabrication, and characterization of Mach–Zehnder interferometers. Photonics Nanostruct. Fundam. Appl. 2019, 37, 100733. [Google Scholar] [CrossRef]
- El Shamy, R.S.; Khalil, D.; Swillam, M.A. Mid Infrared Optical Gas Sensor Using Plasmonic Mach-Zehnder Interferometer. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Inan, H.; Poyraz, M.; Inci, F.; Lifson, M.A.; Baday, M.; Cunningham, B.T.; Demirci, U. Photonic crystals: Emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 2017, 46, 366–388. [Google Scholar] [CrossRef]
- Long, H.; Bao, L.; Habeeb, A.A.; Lu, P. Effects of doping concentration on the surface plasmonic resonances and optical nonlinearities in AGZO nano-triangle arrays. Opt. Quantum Electron. 2017, 49, 1–8. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron. 2019, 142, 111449. [Google Scholar] [CrossRef]
- Salam, A.O.A.; Sheriff, R.E.; Al-Araji, S.R.; Mezher, K.; Nasir, Q. Multi-taper spectrum-based estimator for cognitive radio using multiple antennas and STBC techniques. IET Circ. Dev. Syst. 2018, 12, 133–143. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Han, Q.; Yan, W.; Yu, L. Fiber loop ring-down cavity integrated U-bent single-mode-fiber for magnetic field sensing. Photonics Res. 2016, 4, 322. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, L.; Zhang, Z.; Yang, J.; Wang, J.; Zhang, L.; Deng, X.; Zhang, Z. Fiber loop ring down for static ice pressure detection. Opt. Fiber Technol. 2017, 36, 312–316. [Google Scholar] [CrossRef]
- Killian, J.L.; Ye, F.; Wang, M.D. Optical Tweezers: A Force to Be Reckoned With. Cell 2018, 175, 1445–1448. [Google Scholar] [CrossRef] [Green Version]
- Crozier, K.B. Quo vadis, plasmonic optical tweezers? Light Sci. Appl. 2019, 8, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Kao, K.C.; Hockham, G.A. Dielectric-Fibre Surface Waveguides for Optical Frequencies; Pergamon Press Ltd.: Oxford, UK, 1966. [Google Scholar]
- Culshaw, B. Optical Fiber Sensor Technologies: Opportunities and-Perhaps-Pitfalls. J. Lightwave Technol. 2004, 22, 39–50. [Google Scholar] [CrossRef]
- Taha, B.A.; Mashhadany, Y.A.; Mokhtar, M.H.H.; Zan, M.S.D.B.; Arsad, N. An analysis review of detection coronavirus disease 2019 (COVID-19) based on biosensor application. Sensors 2020, 20, 6764. [Google Scholar] [CrossRef] [PubMed]
- Taha, B.A. Perspectives of Photonics Technology to Diagnosis COVID-19 Viruses: A Short Review. J. Appl. Sci. Nanotechnol. 2021, 1, 1–6. [Google Scholar] [CrossRef]
- Taha, B.A.; Al Mashhadany, Y.; Bachok, N.N.; Bakar, A.A.A.; Mokhtar, M.H.H.; Zan, M.S.D.B.; Arsad, N. Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics 2021, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Elgaud, M.M.; Bakar, A.A.A.; Ghaith, A.A.; Naim, N.F.; Arsad, N.; Mokhtar, M.H.H.; Azeman, N.H.; Zan, M.S.D. Pulse compressed time domain multiplexed fiber bragg grating sensor: A comparative study. IEEE Access 2018, 6, 64427–64434. [Google Scholar] [CrossRef]
- Rao, Y.-J.; Deng, M.; Duan, D.-W.; Yang, X.-C.; Zhu, T.; Cheng, G.-H. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express 2007, 15, 14123. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.A.; Grenier, J.R.; Herman, P.R.; Aitchison, J.S.; Marques, P.V.S. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica. Opt. Express 2011, 19, 11992. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, S.; Lee, B.H.; Oh, K. Ultracompact in-line broadband Mach–Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide. Opt. Lett. 2008, 33, 2934–2936. [Google Scholar] [CrossRef] [Green Version]
- Leng, Y.; Yun, V.E.; Goldhar, J. UV laser fabrication and modification of fiber Bragg gratings by stitching sub-gratings with in situ fluorescence monitoring. Appl. Opt. 2017, 56, 6977–6981. [Google Scholar] [CrossRef]
- Morales, A.M.; Lieber, C.M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211. [Google Scholar] [CrossRef]
- Westwater, J. Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1997, 15, 554. [Google Scholar] [CrossRef]
- Chen, J.; Reed, M.A.; Rawlett, A.M.; Tour, J.M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 1999, 286, 1550–1552. [Google Scholar] [CrossRef] [Green Version]
- Giallorenzi, T.G.; Dandridge, A. Optical Fiber Sensor Technology. IEEE Trans. Microwave Theory Tech. 1982, 30, 472–511. [Google Scholar] [CrossRef] [Green Version]
- Mehrvar, M.; Bis, C.; Scharer, J.M.; Moo-Young, M.; Luong, J.H. Fiber-optic biosensors-Trends and advances. Anal. Sci. 2000, 16, 677–692. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.A. Fiber-Optic Chemical Sensors. Anal. Chem. 1992, 64. [Google Scholar] [CrossRef]
- Seitz, W.R. Chemical sensors based on fiber optics. Anal. Chem. 1984, 56, A16–A34. [Google Scholar] [CrossRef]
- Jarzebinska, R.; Korposh, S.; James, S.; Batty, W.; Tatam, R.; Lee, S.W. Optical Gas Sensor Fabrication Based on Porphyrin-Anchored Electrostatic Self-Assembly onto Tapered Optical Fibers. Anal. Lett. 2012, 45, 1297–1309. [Google Scholar] [CrossRef] [Green Version]
- Jarzebinska, R.; Cheung, C.S.; James, S.W.; Tatam, R.P. Response of the transmission spectrum of tapered optical fibres to the deposition of a nanostructured coating. Meas. Sci. Technol. 2009, 20, 34001. [Google Scholar] [CrossRef]
- Mackenzie, H.S.; Payne, F.P. Evanescent Field Amplification in a Tapered Single-Mode Optical Fibre. Electron. Lett. 1990, 26, 130–132. [Google Scholar] [CrossRef]
- Massaro, A.; Pierantoni, L.; Rozzi, T. Far-field radiation of optical fibers with tapered end. J. Lightwave Technol. 2006, 24, 3162–3168. [Google Scholar] [CrossRef]
- Latifi, H.; Zibaii, M.I.; Hosseini, S.M.; Jorge, P. Nonadiabatic tapered optical fiber for biosensor applications. Photonic Sens. 2012, 2, 340–356. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, P.; Chen, L.; Bao, X. Recent developments in micro-structured fiber optic sensors. Fibers 2017, 5, 3. [Google Scholar] [CrossRef]
- Jabbar, A.A.; Haider, A.J.; Haider, M.J.; Al-Azawi, K.F. Preparation and characterization of NiO/PSi as self-cleaning surface. J. Mater. Res. Technol. 2020, 9, 15123–15131. [Google Scholar] [CrossRef]
- Birks, T.A.; Li, Y.W. The Shape of Fiber Tapers. J. Lightwave Technol. 1992, 10, 432–438. [Google Scholar] [CrossRef]
- Leung, A.; Rijal, K.; Shankar, P.M.; Mutharasan, R. Effects of geometry on transmission and sensing potential of tapered fiber sensors. Biosens. Bioelectron. 2006, 21, 2202–2209. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, S.; Uttamchandani, D. Development of a fibre optic micro-optrode for intracellular pH measurements. IEE Proc. Optoelectron. 1997, 144, 162–167. [Google Scholar] [CrossRef]
- International, S.M.; Nishitani, R.; Umeno, T.; Kasuya, A.; Nishina, Y. Correlation Between Scanning Tunneling Microscopy (STM)-Induced Photon Map and the STM Topography of Nanometer-Size Metal Particles. eCM J. 1998, 12, 113. [Google Scholar]
- Zhao, X.; Zhao, N.; Shi, Y.; Xin, H.; Li, B. Optical fiber tweezers: A versatile tool for optical trapping and manipulation. Micromachines 2020, 11, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abushagur, A.A.G.; Arsad, N.; Mokhtar, M.H.H.; Bakar, A.A.A. High Sensitive Microsurgical Force Sensor Using Spectral-Width of Tapered Fiber Bragg Gratings. In Proceedings of the 2019 IEEE International Conference on BioPhotonics (BioPhotonics), Taipei, Taiwan, 15–18 September 2019; pp. 1–2. [Google Scholar]
- Sun, D.; Ran, Y.; Wang, G. Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber bragg grating. Sensors 2017, 17, 2559. [Google Scholar] [CrossRef] [Green Version]
- Mitschke, F. Fiber Optics: Physics and Technology, 2nd ed.; Springer: Berlin, Germany, 2016; ISBN 9783662527641. [Google Scholar]
- Chen, G.Y.; Wu, X.; Kang, Y.Q.; Yu, L.; Monro, T.M.; Lancaster, D.G.; Liu, X.; Xu, H. Ultra-fast Hygrometer based on U-shaped Optical Microfiber with Nanoporous Polyelectrolyte Coating. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Pang, F.; Huang, S.; Zou, F.; Dong, Y.; Wang, T. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD. Opt. Express 2015, 23, 13880. [Google Scholar] [CrossRef]
- He, F.; Liao, Y.; Lin, J.; Song, J.; Qiao, L.; Cheng, Y.; He, F.; Sugioka, K. Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass. Sensors 2014, 14, 19402–19440. [Google Scholar] [CrossRef] [PubMed]
- Correia, R.; James, S.; Lee, S.W.; Morgan, S.P.; Korposh, S. Biomedical application of optical fibre sensors. J. Opt. 2018, 20. [Google Scholar] [CrossRef]
- Black, R.J.; Lacroix, S.; Gonthier, F.; Love, J.D. Tapered single-mode fibres and devices Part 2. Experimental and theoretical quantification. IEE Proc. Part J Optoelectron. 1991, 138, 355–364. [Google Scholar] [CrossRef]
- Harun, S.W.; Lim, K.S.; Tio, C.K.; Dimyati, K.; Ahmad, H. Theoretical analysis and fabrication of tapered fiber. Optik 2013, 124, 538–543. [Google Scholar] [CrossRef]
- Moore, J.P.; Rogge, M.D. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt. Express 2012, 20, 2967. [Google Scholar] [CrossRef]
- Lavrov, V.S.; Plotnikov, M.Y.; Aksarin, S.M.; Efimov, M.E.; Shulepov, V.A.; Kulikov, A.V.; Kireenkov, A.U. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings. Opt. Fiber Technol. 2017, 34, 47–51. [Google Scholar] [CrossRef]
- Popov, S.M.; Butov, O.V.; Kolosovskiy, A.O.; Voloshin, V.V.; Vorob’ev, I.L.; Vyatkin, M.Y.; Fotiadi, A.A.; Chamorovskiy, Y.K. Optical fibres with arrays of FBG: Properties and application. Prog. Electromagn. Res. Symp. 2017, 1568–1573. [Google Scholar] [CrossRef]
- Popov, S.M.; Butov, O.V.; Chamorovski, Y.K.; Isaev, V.A.; Mégret, P.; Korobko, D.A.; Zolotovskii, I.O.; Fotiadi, A.A. Narrow linewidth short cavity Brillouin random laser based on Bragg grating array fiber and dynamical population inversion gratings. Results Phys. 2018, 9, 806–808. [Google Scholar] [CrossRef]
- Abushagur, A.A.G.; Bakar, A.A.A.; Dzulkefly Bin Zan, M.S.; Arsad, N. A Novel Technique Employing Tapered Fiber Bragg Grating to Solve the Axial/Transverse Forces Crosstalk in Microsurgical Instruments. IEEE Sens. J. 2016, 16, 7671–7680. [Google Scholar] [CrossRef]
- Zhao, J.; Niu, P.; Zhang, C.; Sun, X.; Bai, H.; Miao, C. Temperature-compensated fiber laser refractometer based on compact hybrid S-taper/FBG structure. Opt. Fiber Technol. 2018, 45, 300–305. [Google Scholar] [CrossRef]
- Ding, M.; Niu, P.; Yu, L.; Zhao, J.; Zhang, C. Dual-point refractive index measurement based on cascaded S fiber taper/FBG structures. Optik 2019, 183, 1120–1125. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, W.; Dong, M.; Zhu, L.; Meng, F. Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI. IEEE Sens. J. 2019, 19, 5645–5652. [Google Scholar] [CrossRef]
- Chen, M.Q.; Zhao, Y.; Xia, F.; Peng, Y.; Tong, R.J. High sensitivity temperature sensor based on fiber air-microbubble Fabry-Perot interferometer with PDMS-filled hollow-core fiber. Sens. Actuators A Phys. 2018, 275, 60–66. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y.; Yang, J.; Yuan, L. In-fiber integrated high sensitivity temperature sensor based on long Fabry-Perot resonator. Opt. Express 2019, 27, 14675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Wang, Z.; Liu, Z.; Wei, Y.; Zhao, E.; Yang, X.; Zhang, J.; Yang, J.; Yuan, L. A novel Michelson Fabry-Perot hybrid interference sensor based on the micro-structured fiber. Opt. Commun. 2016, 374, 58–63. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.Q.; Lv, R.Q.; Xia, F. In-fiber rectangular air fabry-perot strain sensor based on high-precision fiber cutting platform. Opt. Commun. 2017, 384, 107–110. [Google Scholar] [CrossRef]
- Yoshino, T.; Ose, T.; Kurosawa, K.; Itoh, K. Fiber-Optic Fabry–Perot Interferometer and Its Sensor Applications. IEEE Trans. Microw. Theory Tech. 1982, 30, 1612–1621. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Zhang, W.; Li, Z.; Kong, L.; Yu, L.; Ge, J.; Yan, T. Ultra-high sensitivity and temperature-compensated Fabry–Perot strain sensor based on tapered FBG. Opt. Laser Technol. 2020, 124, 105997. [Google Scholar] [CrossRef]
- Chamorovskiy, Y.K.; Butov, O.V.; Kolosovskiy, A.O.; Popov, S.M.; Voloshin, V.V.; Vorob’ev, I.L.; Vyatkin, M.Y.; Odnobludov, M.A. Long tapered fiber with array of FBG. Opt. Fiber Technol. 2019, 50, 95–98. [Google Scholar] [CrossRef]
- Kerttula, J.; Filippov, V.; Ustimchik, V.; Chamorovskiy, Y.; Okhotnikov, O.G. Mode evolution in long tapered fibers with high tapering ratio. Opt. Express 2012, 20, 25461. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Gao, S.; Geng, P.; Xue, X.; Bai, Z.; Liang, H. Long-period fiber grating cascaded to an S fiber taper for simultaneous measurement of temperature and refractive index. IEEE Photonics Technol. Lett. 2013, 25, 888–891. [Google Scholar] [CrossRef]
- Luo, A.; Gao, K.; Liu, F.; Qu, R.; Fang, Z. Evanescent-field coupling based on long period grating and tapered fiber. Opt. Commun. 2004, 240, 69–73. [Google Scholar] [CrossRef]
- Navruz, I.; Ari, F.; Bilsel, M.; AL-Mashhadani, Z.A. Enhancing refractive index sensitivity using micro-tapered long-period fiber grating inscribed in biconical tapered fiber. Opt. Fiber Technol. 2018, 45, 201–207. [Google Scholar] [CrossRef]
- Jin, X.; Sun, C.; Duan, S.; Liu, W.; Li, G.; Zhang, S.; Chen, X.; Zhao, L.; Lu, C.; Yang, X.; et al. High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Fan, P.; Sun, L.-P.; Yu, Z.; Li, J.; Wu, C.; Guan, B.-O. Higher-order diffraction of long-period microfiber gratings realized by arc discharge method. Opt. Express 2016, 24, 25380. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Zhang, L.; Bennion, I. Sensitivity characteristics of long-period fiber gratings. J. Lightwave Technol. 2002, 20, 255–266. [Google Scholar] [CrossRef]
- Rego, G. A review of refractometric sensors based on long period fibre gratings. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Yam, S.S.-H.; Loock, H.-P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 2008, 33, 1105. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, Y.; Yang, Y.; Jin, W.; Jiang, Y.; Shen, Y.; Jian, S. High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer. Meas. Sci. Technol. 2017, 28, 105102. [Google Scholar] [CrossRef] [Green Version]
- Talataisong, W.; Wang, D.N.; Chitaree, R.; Liao, C.R.; Wang, C. Fiber in-line Mach–Zehnder interferometer based on an inner air-cavity for high-pressure sensing. Opt. Lett. 2015, 40, 1220. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Kong, L.; Dang, Y.; Xia, F.; Zhang, Y.; Zhao, Y.; Hu, H.; Li, J. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer. Sens. Actuators B Chem. 2016, 225, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Raji, Y.M.; Lin, H.S.; Ibrahim, S.A.; Mokhtar, M.R.; Yusoff, Z. Intensity-modulated abrupt tapered Fiber Mach-Zehnder Interferometer for the simultaneous sensing of temperature and curvature. Opt. Laser Technol. 2016, 86, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.R.; Chen, H.F.; Wang, D.N. Ultracompact optical fiber sensor for refractive index and high-temperature measurement. J. Lightwave Technol. 2014, 32, 2531–2535. [Google Scholar] [CrossRef]
- Hu, T.Y.; Wang, Y.; Liao, C.R.; Wang, D.N. Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air cavity for high-temperature sensing. Opt. Lett. 2012, 37, 5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.; Zhu, F.; Zhou, P.; Wang, Y. Fiber taper-based mach-zehnder interferometer for ethanol concentration measurement. Micromachines 2019, 10, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Jiang, L.; Wang, S.; Mengmeng Wang, Q.C.; Yang, J. A new Mach-Zehnder interferometer in a thinned-cladding fiber fabricated by electric arc for high sensitivity refractive index sensing. Opt. Lasers Eng. 2012, 50, 829–832. [Google Scholar] [CrossRef]
- Men, L.; Lu, P.; Chen, Q. Femtosecond laser trimmed fiber taper for simultaneous measurement of axial strain and temperature. IEEE Photonics Technol. Lett. 2011, 23, 320–322. [Google Scholar] [CrossRef]
- Lu, P.; Chen, Q. Femtosecond laser microstructured fibre refractive index sensor with temperature compensation. Electron. Lett. 2010, 46, 1616–1617. [Google Scholar] [CrossRef]
- Yingyu Yu, Y.Y.; Lan Jiang, L.J.; Benye Li, B.L.; Zhitao Cao, Z.C.; Sumei Wang, S.W. Fiber inline interferometric refractive index sensors fabricated by femtosecond laser and fusion splicing. Chin. Opt. Lett. 2013, 11, 110603–110606. [Google Scholar] [CrossRef] [Green Version]
- Salazar Sicacha, M.; Minkovich, V.P.; Sotsky, A.B.; Shilov, A.V.; Sotskaya, L.I. Transmittance of tapered photonic crystal fibers with absorbing coatings. EPJ Web Conf. 2020, 238, 08005. [Google Scholar] [CrossRef]
- Fu, G.; Fu, X.; Guo, P.; Ji, Y.; Bi, W. Research on Fused Tapered Photonic Crystal Fiber Sensor Based on the Method of Intermittent Cooling. J. Sens. 2016, 2016. [Google Scholar] [CrossRef]
- Mägi, E.C.; Steinvurzel, P.; Eggleton, B.J. Tapered photonic crystal fibers. Opt. Express 2004, 12, 776. [Google Scholar] [CrossRef]
- Bondu, M.; Brooks, C.; Jakobsen, C.; Oakes, K.; Moselund, P.M.; Leick, L.; Bang, O.; Podoleanu, A. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy. J. Biomed. Opt. 2016, 21, 061005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Qiu, S.J.; Chen, Y.; Xu, F.; Lu, Y.Q. Ultra-sensitive refractive index sensor with slightly tapered photonic crystal fiber. IEEE Photonics Technol. Lett. 2012, 24, 1771–1774. [Google Scholar] [CrossRef]
- Ni, K.; Chan, C.C.; Dong, X.; Poh, C.L.; Li, T. Temperature-independent refractometer based on a tapered photonic crystal fiber interferometer. Opt. Commun. 2013, 291, 238–241. [Google Scholar] [CrossRef]
- Feng, C.; Feng, G.-Y.; Zhou, G.-R.; Chen, N.-J.; Zhou, S.-H. Design of an ultracompact optical gas sensor based on a photonic crystal nanobeam cavity. Laser Phys. Lett. 2012, 9, 875–878. [Google Scholar] [CrossRef]
- Neseli, B.; Bor, E.; Kurt, H.; Turduev, M. Transmission enhanced wavelength demultiplexer design based on photonic crystal waveguide with gradually varied width. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar]
- Homola, J.; Piliarik, M. Surface Plasmon Resonance (SPR) Sensors; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9783540339182. [Google Scholar]
- Kretschmann, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Nat. Sect. A J. Phys. Sci. 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Mauriz, E.; Calle, A.; Lechuga, L.M.; Quintana, J.; Montoya, A.; Manclús, J.J. Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal. Chim. Acta 2006, 561, 40–47. [Google Scholar] [CrossRef]
- Wang, S.; Shan, X.; Patel, U.; Huang, X.; Lu, J.; Li, J.; Tao, N. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad. Sci. USA 2010, 107, 16028–16032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabowo, B.A.; Wang, R.Y.L.; Secario, M.K.; Ou, P.T.; Alom, A.; Liu, J.J.; Liu, K.C. Rapid detection and quantification of Enterovirus 71 by a portable surface plasmon resonance biosensor. Biosens. Bioelectron. 2017, 92, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Huang, C.-H.; Cheng, G.-L.; Chen, N.-K.; Chui, H.-C. Tapered optical fiber sensor based on localized surface plasmon resonance. Opt. Express 2012, 20, 21693. [Google Scholar] [CrossRef] [PubMed]
- Musa, N.; Safwan Abd Aziz, M.; Bakhtiar, H.; Krishnan, G.; Hafiz Dzafran Othman, M.; Rahman, M.A.; Fauzi Ismail, A. Performance of Single Mode Tapered Optical Fiber Sensor Based on Localized Surface Plasmon Resonance (LSPR) for Various Coating Time. J. Phys. Conf. Ser. 2020, 1484. [Google Scholar] [CrossRef]
- Wang, Q.; Farrell, G.; Yan, W. Investigation on single-mode-multimode-single-mode fiber structure. J. Lightwave Technol. 2008, 26, 512–519. [Google Scholar] [CrossRef]
- Wang, P.; Brambilla, G.; Ding, M.; Semenova, Y.; Wu, Q.; Farrell, G. Investigation of single-mode–multimode–single-mode fiber structures and their application for refractive index sensing. America 2011, 28, 1180–1186. [Google Scholar]
- Zhao, Y.; Cai, L.; Hu, H.F. Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure. IEEE Sens. J. 2015, 15, 6348–6353. [Google Scholar] [CrossRef]
- Sun, G.; Wu, G.; Wang, F.; Tang, R.; Qiu, G. High-Stress Resistance Fiber Refractometer Based on MMF Sandwiched between Two SMF Half-Tapers. IEEE Photonics Technol. Lett. 2016, 28, 1336–1339. [Google Scholar] [CrossRef]
- Kang, J.; Yang, J.; Zhang, X.; Liu, C.; Wang, L. Intensity demodulated refractive index sensor based on front-tapered single-mode-multimode-single-mode fiber structure. Sensors 2018, 18, 2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.O.; Magalhães, R.; Marques, M.B.; Frazão, O. New advances in fiber cavity ring-down technology. Opt. Laser Technol. 2016, 78, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhao, Y.; Wang, Q. SMF Taper Evanescent Field-Based RI Sensor Combined with Fiber Loop Ring Down Technology. IEEE Photonics Technol. Lett. 2015, 27, 1802–1805. [Google Scholar] [CrossRef]
- Niu, P.; Zhao, J.; Zhang, C.; Bai, H.; Sun, X.; Bai, J.; Chen, L. S Fiber Taper-Based Fiber Loop Ring-Down Refractometer. IEEE Sens. J. 2019, 19, 970–975. [Google Scholar] [CrossRef]
- Tian, J.; Yang, L.; Qin, C.; Wu, T.; Wang, J.; Zhang, Z.; Li, K.; Copner, N.J. Refractive Index Sensing Based on Chaotic Correlation Fiber Loop Ring down System Using Tapered Fiber. IEEE Sens. J. 2020, 20, 4215–4220. [Google Scholar] [CrossRef]
- Li, Y.C.; Xin, H.B.; Lei, H.X.; Liu, L.L.; Li, Y.Z.; Zhang, Y.; Li, B.J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci. Appl. 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Xin, H.; Zhang, Y.; Lei, H.; Zhang, T.; Ye, H.; Saenz, J.J.; Qiu, C.W.; Li, B. Living Nanospear for Near-Field Optical Probing. ACS Nano 2018, 12, 10703–10711. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Weng, Z.; Li, Y.; Shui, L.; Jiao, Z.; Chen, Y.; Luo, A.; Xing, X.; He, S. Miniaturized optical fiber tweezers for cell separation by optical force. Opt. Lett. 2019, 44, 1868–1871. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.B.; Lei, J.J.; Liu, Z.H.; Zhang, Y.; Yuan, L.B. A study of multi-trapping of tapered-tip single fiber optical tweezers. Chin. Phys. B 2014, 23. [Google Scholar] [CrossRef]
- Lou, Y.; Wu, D.; Pang, Y. Optical Trapping and Manipulation Using Optical Fibers. Adv. Fiber Mater. 2019, 1, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xu, B.; Gong, C.; Luo, J.; Zhang, Q.; Gong, Y. Fiber optofluidic technology based on optical force and photothermal effects. Micromachines 2019, 10, 499. [Google Scholar] [CrossRef] [Green Version]
- Asadollahbaik, A.; Thiele, S.; Weber, K.; Kumar, A.; Drozella, J.; Sterl, F.; Herkommer, A.M.; Giessen, H.; Fick, J. Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses. ACS Photonics 2019. [Google Scholar] [CrossRef]
- Korposh, S.; James, S.W.; Lee, S.W.; Tatam, R.P. Tapered Optical Fibre Sensors: Current Trends and Future Perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maragò, O.M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.; Ferrari, A.C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013, 8, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Tong, L. Micro/nanofibre optical sensors: Challenges and prospects. Sensors 2018, 18, 903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakomski, M.; Guzowski, B.; Wozniak, A. Fabrication of ultra-long tapered optical fibers. Microelectron. Eng. 2020, 221, 111193. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, F. Multifunctional integration on optical fiber tips: Challenges and opportunities. Adv. Photonics 2020, 2, 1–24. [Google Scholar] [CrossRef]
- Hu, Q.; Li, C. The New Tapered Fiber Connector and the Test of Its Error Rate and Coupling Characteristics. Int. J. Opt. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhu, L.; Yang, X.; Lou, X.; Yu, L. A refractive index sensor based on h-shaped photonic crystal fibers coated with ag-graphene layers. Sensors 2020, 20, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tapered Method | Challenges |
---|---|
Fiber Bragg grating (FBG) | • Some spectra of reflection overlapped. • Unstable interference wave. • Complex configuration for grating inscription. • Insufficient sensitivity. |
Long-period fiber grating (LPFG) | • The spectrum is limiting. • Cross-sensitivity problem. • The roughness of the surface. |
Mach–Zehnder (MZI) | • Spectral band-width is limited. • Manufacturing cost. • Sensitivity enhancement is required. |
Photonic crystals (PC) | • The samples given are limited. • The manufacturing of metal layers is a complex procedure. • Integration is expensive. • Mechanical reliability is weak, and mass production is challenging. |
Surface plasmon resonance (SPR) | • The life of the sensitive layer controls the lifetime of the device. • Small sample size. • There is a need for practical application, including different sample collection processes. • The waist area is rather hard. |
Multi-taper devices | • Measured refractive index range is limited. • Limited stability. • The roughness of the surface. |
Fiber loop ring-down technology | • The samples given are limited. • Measuring accuracy depends on the high wavelength resolution of the de-modulation device. |
Optical tweezers | • Obtain an analytical formula for the output light field is difficult. • The trapping of optical tweezers is inadequate due to the limit of laser beam diffraction. • Dramatic disruptions from molecular diffusion. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, B.A.; Ali, N.; Sapiee, N.M.; Fadhel, M.M.; Mat Yeh, R.M.; Bachok, N.N.; Al Mashhadany, Y.; Arsad, N. Comprehensive Review Tapered Optical Fiber Configurations for Sensing Application: Trend and Challenges. Biosensors 2021, 11, 253. https://doi.org/10.3390/bios11080253
Taha BA, Ali N, Sapiee NM, Fadhel MM, Mat Yeh RM, Bachok NN, Al Mashhadany Y, Arsad N. Comprehensive Review Tapered Optical Fiber Configurations for Sensing Application: Trend and Challenges. Biosensors. 2021; 11(8):253. https://doi.org/10.3390/bios11080253
Chicago/Turabian StyleTaha, Bakr Ahmed, Norazida Ali, Nurfarhana Mohamad Sapiee, Mahmoud Muhanad Fadhel, Ros Maria Mat Yeh, Nur Nadia Bachok, Yousif Al Mashhadany, and Norhana Arsad. 2021. "Comprehensive Review Tapered Optical Fiber Configurations for Sensing Application: Trend and Challenges" Biosensors 11, no. 8: 253. https://doi.org/10.3390/bios11080253
APA StyleTaha, B. A., Ali, N., Sapiee, N. M., Fadhel, M. M., Mat Yeh, R. M., Bachok, N. N., Al Mashhadany, Y., & Arsad, N. (2021). Comprehensive Review Tapered Optical Fiber Configurations for Sensing Application: Trend and Challenges. Biosensors, 11(8), 253. https://doi.org/10.3390/bios11080253