Rapid Detection of Fatty Acids in Edible Oils Using Vis-NIR Reflectance Spectroscopy with Multivariate Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Samples
2.2. Measurement of Vis-NIR Reflectance Spectra of Oil Samples
2.3. Measurement of Four Fatty Acid Contents in Oil Samples
2.4. Pretreatment of Vis-NIR Reflectance Spectra
2.5. Selection of Effective Wavelengths of Vis-NIR Reflectance Spectra
- Successive projections algorithm (SPA): SPA is a variable-selection technique that selects variables with minimal redundant information and collinearity from the spectral information. It is a forward selection method by calculating the projection of each wavelength on the other unselected wavelengths and introducing the wavelengths with maximum projection into the combination of wavelengths.
- Variable importance in projection (VIP): VIP is an analytical technique for estimating the effect of individual variables in a system. The VIP score is a parameter used to evaluate the importance of the independent variable to the dependent variable in the model. An independent variable with a higher score is considered as significant influence on the dependent variable. Variables with low scores are discarded to ensure the validity of the model.
- Principal component analysis (PCA): PCA is a statistical analysis method that can reduce and simplify the original data. The spectra had a wide range of bands with a certain correlation between different bands. The generated principal components are the comprehensive indices by the linear combination of the primitive features (i.e., different wavelengths in this study), that can eliminate the correlation in original data. The loading vectors of PCA can be used to select the important wavelength regions. The higher the loading values, the more important the corresponding wavelengths. The wavelength points with the larger absolute values in the top loading vectors were selected as the effective wavelengths.
2.6. Models Establishment
2.7. Performance Evaluation
3. Results and Discussion
3.1. Vis-NIR Reflectance Spectra of Different Edible Oils
3.2. Quantitative Determination of Fatty Acids by GC-MS
3.3. Prediction of Fatty Acid Contents with Full Wavelengths Reflectance Spectra
3.4. Prediction of Fatty Acid Contents with Effective Wavelengths
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eratte, D.; Dowling, K.; Barrow, C.J.; Adhikari, B.P. In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates. Food Chem. 2017, 227, 129–136. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Chemical, rheological and nutritional characteristics of sesame and olive oils blended with linseed oil. Adv. Pharm. Bull. 2018, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Salah, W.A.; Nofal, M. Review of some adulteration detection techniques of edible oils. J. Sci. Food Agric. 2021, 101, 811–819. [Google Scholar] [CrossRef]
- Mousa, M.A.; Wang, Y.; Antora, S.A.; Al-Qurashi, A.D.; Ibrahim, O.H.; He, H.J.; Liu, S.; Kamruzzaman, M. An overview of recent advances and applications of FT-IR spectroscopy for quality, authenticity, and adulteration detection in edible oils. Crit. Rev. Food Sci. Nutr. 2021, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Varo, A.; Sánchez, M.T.; De la Haba, M.J.; Torres, I.; Pérez-Marín, D. Fast, low-cost and non-destructive physico-chemical analysis of virgin olive oils using near-infrared reflectance spectroscopy. Sensors 2017, 17, 2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas. Charact. 2020, 14, 2600–2610. [Google Scholar] [CrossRef]
- He, Y.; Jiang, H.; Chen, Q. High-precision identification of the actual storage periods of edible oil by FT-NIR spectroscopy combined with chemometric methods. Anal. Methods 2020, 12, 3722–3728. [Google Scholar] [CrossRef]
- Ichihara, K.; Kohsaka, C.; Yamamoto, Y.; Masumura, T. Simultaneous Determination of Free Fatty Acids and Esterified Fatty Acids in Rice Oil by Gas Chromatography. J. Am. Oil Chem. Soc. 2021, 98, 149–155. [Google Scholar] [CrossRef]
- Li, T.; Guo, Q.; Qu, Y.; Li, Y.; Wang, X.; Sun, Z.; Wang, Q. An improved gas chromatography-based approach for characterisation of fatty acids in fresh basil seed oil. Int. J. Food Sci. Technol. 2021, 56, 2492–2503. [Google Scholar] [CrossRef]
- Ravi, R.; Taheri, A.; Khandekar, D.; Millas, R. Rapid profiling of soybean aromatic compounds using electronic nose. Biosensors 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, H.; Nakano, Y.; Sakamaki, H.; Yamanaka, H.; Nakai, M. Basic eluent for rapid and comprehensive analysis of fatty acid isomers using reversed-phase high performance liquid chromatography/Fourier transform mass spectrometry. J. Chromatogr. A 2019, 1585, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Wang, G.; Su, G.; Wang, X.; Nie, S. Rapid identification of edible oil species using supervised support vector machine based on low-field nuclear magnetic resonance relaxation features. Food Chem. 2019, 280, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Saleem, M.; Anser, M.R.; Khan, S.; Ullah, R.; Bilal, M. Validation of fluorescence spectroscopy to detect adulteration of edible oil in extra virgin olive oil (EVOO) by applying chemometrics. Appl. Spectrosc. 2018, 72, 1371–1379. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, T.; Li, J.; Chen, Z. Rapid identification of edible oil and swill-cooked dirty oil by using near-infrared spectroscopy and sparse representation classification. Anal. Methods 2015, 7, 2367–2372. [Google Scholar] [CrossRef]
- Jiang, H.; He, Y.; Chen, Q. Determination of acid value during edible oil storage using a portable NIR spectroscopy system combined with variable selection algorithms based on an MPA-based strategy. J. Sci. Food Agric. 2021, 101, 3328–3335. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zhang, Y.; Wang, D.; Wang, X.; Yu, L.; Zhang, W.; Li, P. Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils. Trends Food Sci. Technol. 2020, 101, 172–181. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H.; Ference, C.; Qiu, G.; Liang, X. Rapid Nondestructive Detection of Water Content and Granulation in Postharvest “Shatian” Pomelo Using Visible/Near-Infrared Spectroscopy. Biosensors 2020, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Anushree, S.; André, M.; Guillaume, D.; Frédéric, F. Stearic sunflower oil as a sustainable and healthy alternative to palm oil. A review. Agron. Sustain. Dev. 2017, 37, 1–10. [Google Scholar] [CrossRef]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Cater, N.B.; Denke, M.A. Behenic acid is a cholesterol-raising saturated fatty acid in humans. Am. J. Clin. Nutr. 2001, 73, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Xiong, C.; Qu, H.; Liu, C.; Chen, W.; Zheng, L. Non-destructive determination and visualisation of insoluble and soluble dietary fibre contents in fresh-cut celeries during storage periods using hyperspectral imaging technique. Food Chem. 2017, 228, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Barnes, R.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Faber, N.K.M. Multivariate sensitivity for the interpretation of the effect of spectral pretreatment methods on near-infrared calibration model predictions. Anal. Chem. 1999, 71, 557–565. [Google Scholar] [CrossRef]
- Galloway, C.; Le Ru, E.; Etchegoin, P. An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectrosc. 2009, 63, 1370–1376. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Oussama, A.; Elabadi, F.; Platikanov, S.; Kzaiber, F.; Tauler, R. Detection of olive oil adulteration using FT-IR spectroscopy and PLS with variable importance of projection (VIP) scores. J. Am. Oil Chem. Soc. 2012, 89, 1807–1812. [Google Scholar] [CrossRef]
- Ranjan, R.; Kumar, N.; Kiranmayee, A.H.; Panchariya, P. Characterization of Edible Oils Using NIR Spectroscopy and Chemometric Methods. In International Conference on Intelligent Systems Design and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 292–300. [Google Scholar]
- Hubert, M.; Branden, K.V. Robust methods for partial least squares regression. J. Chemom. Soc. 2003, 17, 537–549. [Google Scholar] [CrossRef]
- Jahed Armaghani, D.; Asteris, P.G.; Askarian, B.; Hasanipanah, M.; Tarinejad, R.; Huynh, V.V. Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability 2020, 12, 2229. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. On-line support vector machine regression. In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2002; pp. 282–294. [Google Scholar]
- Zhang, B.; Huang, W.; Li, J.; Zhao, C.; Fan, S.; Wu, J.; Liu, C. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. 2014, 62, 326–343. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Chica-Olmo, M.; Chica-Rivas, M. Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. Int. J. Geogr. Inf. Sci. 2014, 28, 1336–1354. [Google Scholar] [CrossRef]
- Cozzolino, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT-Food Sci. Technol. 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Choi, J.Y.; Moon, K.D. Non-destructive discrimination of sesame oils via hyperspectral image analysis. J. Food Compos. Anal. 2020, 90, 103505. [Google Scholar] [CrossRef]
- Morsy, N.; Sun, D.W. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef. Meat Sci. 2013, 93, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Thiviyanathan, V.A.; Ker, P.J.; Leong, Y.S.; Jamaludin, M.; Hannan, M.; Mun, L.H. Optical Detection of Inhibitor in Transformer Oil at Silicon-Detectable Wavelength Using Variable Path Length Model. IEEE Sens. J. 2020, 21, 6035–6042. [Google Scholar] [CrossRef]
- García Martín, J.F. Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil’s free acidity determination. Int. J. Food Sci. Technol. 2015, 50, 1461–1467. [Google Scholar] [CrossRef] [Green Version]
Oil | Palmitic Acid | Stearic Acid | Arachidic Acid | Behenic Acid | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | Mean | sd | Range | Mean | sd | Range | Mean | sd | Range | Mean | sd | |
Sesame oil | 14.07–10.2 | 12.01 | 1.18 | 7.64–5.03 | 5.97 | 0.65 | 0.87–0.7 | 0.7 | 0.08 | 0.22–0.11 | 0.14 | 0.03 |
Soybean oil | 17.58–12.42 | 15.38 | 1.34 | 6.21–4.26 | 5.4 | 0.6 | 0.6–0.5 | 0.5 | 0.08 | 0.7–0.35 | 0.53 | 0.11 |
Corn oil | 17.76–15.66 | 16.67 | 0.68 | 3.02–2.38 | 2.63 | 0.19 | 0.58–0.54 | 0.54 | 0.02 | 0.34–0.14 | 0.19 | 0.06 |
Sunflower oil | 12.54–9.23 | 11.17 | 0.86 | 5.98–3.88 | 5.16 | 0.54 | 0.44–0.37 | 0.37 | 0.04 | 1.2–0.73 | 1.02 | 0.12 |
Rapeseed oil | 5.9–4.26 | 4.93 | 0.57 | 2–1.44 | 1.71 | 0.2 | 0.67–0.51 | 0.51 | 0.07 | 0.37–0.22 | 0.27 | 0.04 |
Peanut oil | 14.06–7.66 | 11.18 | 1.69 | 4.2–2.43 | 3.31 | 0.52 | 1.67–1.16 | 1.16 | 0.25 | 2.85–1.22 | 1.98 | 0.41 |
Olive oil | 15.78–10.3 | 13.83 | 1.58 | 3.92–2.86 | 3.3 | 0.33 | 0.46–0.42 | 0.42 | 0.02 | 0.16–0.09 | 0.12 | 0.02 |
Fatty Acids | Model | Pretreatment | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|---|
Palmitic acid | PLSR | SNV | 0.9402 | 0.7583 | 0.8807 | 1.5326 |
MSC | 0.9403 | 0.7579 | 0.8733 | 1.6297 | ||
SVM | SNV | 0.9952 | 0.2562 | 0.9504 | 0.8181 | |
MSC | 0.9972 | 0.195 | 0.951 | 0.8136 | ||
RF | SNV | 0.9833 | 0.4215 | 0.8552 | 1.0355 | |
MSC | 0.9828 | 0.4288 | 0.8572 | 1.0418 | ||
Stearic acid | PLSR | SNV | 0.9257 | 0.4233 | 0.8607 | 0.5845 |
MSC | 0.9258 | 0.4232 | 0.8553 | 0.5968 | ||
SVM | SNV | 0.9993 | 0.0404 | 0.9636 | 0.2965 | |
MSC | 0.9956 | 0.1035 | 0.9624 | 0.3016 | ||
RF | SNV | 0.9857 | 0.1735 | 0.9126 | 0.3954 | |
MSC | 0.9866 | 0.1676 | 0.9168 | 0.3847 | ||
Arachidic acid | PLSR | SNV | 0.9008 | 0.0879 | 0.8186 | 0.1203 |
WT | 0.8838 | 0.0952 | 0.8174 | 0.1211 | ||
SVM | SNV | 0.9948 | 0.0204 | 0.9576 | 0.0577 | |
MSC | 0.9907 | 0.0276 | 0.9526 | 0.0615 | ||
RF | SNV | 0.9839 | 0.0317 | 0.9414 | 0.0548 | |
MSC | 0.9843 | 0.0317 | 0.9421 | 0.0562 | ||
Behenic acid | PLSR | SNV | 0.9324 | 0.176 | 0.8699 | 0.2485 |
SG smoothing | 0.9 | 0.214 | 0.8701 | 0.2459 | ||
SVM | SNV | 0.9992 | 0.0187 | 0.9521 | 0.1486 | |
MSC | 0.9993 | 0.0184 | 0.9485 | 0.1543 | ||
RF | SNV | 0.9905 | 0.0622 | 0.9486 | 0.1359 | |
MSC | 0.9915 | 0.0589 | 0.9496 | 0.1347 |
Fatty Acid | Model | Selected Wavelength (nm) | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|---|
Palmitic acid | SNV + SPA + SVM | 819 744 973 1159 698 664 968 1729 680 549 503 1576 1242 426 980 970 392 | 0.9711 | 0.6269 | 0.915 | 1.0731 |
SNV + VIP + SVM | 437 418 439 416 417 438 | 0.4632 | 2.7038 | 0.3809 | 2.8959 | |
SNV + PCA + SVM | 493 605 663 922 971 1205 1409 | 0.8393 | 1.481 | 0.7872 | 1.7138 | |
Stearic acid | SNV + SPA + SVM | 1317 1811 855 2082 1276 1505 762 1012 893 1323 1029 2005 1111 1356 1044 | 0.9875 | 0.1737 | 0.9485 | 0.354 |
SNV + VIP + SVM | 762 747 755 765 767 766 757 752 756 753 754 751 748 750 | 0.7987 | 0.6972 | 0.6089 | 0.9933 | |
SNV + PCA + SVM | 493 605 663 922 971 1205 1409 | 0.735 | 0.8044 | 0.6306 | 0.9461 | |
Arachidic acid | SNV + SPA + SVM | 499 626 455 887 522 579 1546 973 1152 974 705 | 0.9927 | 0.0239 | 0.936 | 0.0715 |
SNV + VIP + SVM | 670 656 669 657 668 658 667 666 659 665 660 664 661 662 663 | 0.3978 | 0.2192 | 0.3177 | 0.2333 | |
SNV + PCA + RF | 493 605 663 922 971 1205 1409 | 0.9689 | 0.0424 | 0.8377 | 0.0849 | |
Behenic acid | SNV + SPA + RF | 649 455 498 1058 519 681 985 1739 426 666 406 578 974 744 | 0.9866 | 0.0735 | 0.9229 | 0.1606 |
SNV + VIP + SVM | 669 655 668 656 667 657 666 665 658 664 659 663 662 660 661 | 0.4743 | 0.4977 | 0.4561 | 0.5097 | |
SNV + PCA + RF | 493 605 663 922 971 1205 1409 | 0.9716 | 0.1014 | 0.8462 | 0.2121 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, N.; Pan, F.; Wang, L.; Weng, S. Rapid Detection of Fatty Acids in Edible Oils Using Vis-NIR Reflectance Spectroscopy with Multivariate Methods. Biosensors 2021, 11, 261. https://doi.org/10.3390/bios11080261
Su N, Pan F, Wang L, Weng S. Rapid Detection of Fatty Acids in Edible Oils Using Vis-NIR Reflectance Spectroscopy with Multivariate Methods. Biosensors. 2021; 11(8):261. https://doi.org/10.3390/bios11080261
Chicago/Turabian StyleSu, Ning, Fangfang Pan, Liusan Wang, and Shizhuang Weng. 2021. "Rapid Detection of Fatty Acids in Edible Oils Using Vis-NIR Reflectance Spectroscopy with Multivariate Methods" Biosensors 11, no. 8: 261. https://doi.org/10.3390/bios11080261
APA StyleSu, N., Pan, F., Wang, L., & Weng, S. (2021). Rapid Detection of Fatty Acids in Edible Oils Using Vis-NIR Reflectance Spectroscopy with Multivariate Methods. Biosensors, 11(8), 261. https://doi.org/10.3390/bios11080261