Ratiometric G-Quadruplex Assay for Robust Lead Detection in Food Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentations
2.2. Pb2+ Detection
2.3. Fluorescent Analysis Method
2.4. Selectivity Test for Pb2+ Detection
2.5. Food Samples Detection
3. Results and Discussion
3.1. Principle and Robustness of the Assay
3.2. Optimization of the Experimental Conditions
3.3. Quantification Performance of Pb2+ Assay
3.4. Specific Test
3.5. Detection of Lead Pollution in Food Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foroughi, M.; Azqhandi, M.H.A. A biological-based adsorbent for a non-biodegradable pollutant: Modeling and optimization of Pb (II) remediation using GO-CS-Fe3O4-EDTA nanocomposite. J. Mol. Liq. 2020, 318, 114077. [Google Scholar] [CrossRef]
- Raghunath, R.; Tripathi, R.M.; Khandekar, R.N.; Nambi, K.S.V. Etention times of Pb, Cd, Cu and Zn in children’s blood. Sci. Total Environ. 1997, 207, 133–139. [Google Scholar] [CrossRef]
- He, A.; Li, X.; Ai, Y.; Li, X.; Li, X.; Zhang, Y.; Gao, Y.; Liu, B.; Zhang, X.; Zhang, M.; et al. Potentially toxic metals and the risk to children’s health in a coal mining city: An investigation of soil and dust levels, bioaccessibility and blood lead levels. Environ. Int. 2020, 141, 105788. [Google Scholar] [CrossRef] [PubMed]
- Durai, L.; Gopalakrishnan, A.; Badhulika, S. Thermal decomposition assisted one-step synthesis of high surface area NiCoP nanospheres for simultaneous sensing of lead, mercury and cadmium ions in groundwater samples. J. Electroanal. Chem. 2020, 861, 113937. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Yang, Z.; Mao, C.; Ji, J. Characteristics of lead geochemistry and the mobility of Pb isotopes in the system of pedogenic rock–pedosphere–irrigated riverwater–cereal–atmosphere from the Yangtze River delta region, China. Chemosphere 2013, 93, 1927–1935. [Google Scholar] [CrossRef]
- El-Kady, A.A.; Abdel-Wahhab, M.A. Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci. Technol. 2018, 75, 36–45. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Sun, L.; Ng, J.C.; Tang, W.; Zhang, H.; Zhao, Y.; Shu, L. Assessment of human health risk due to lead in urban park soils using in vitro methods. Chemosphere 2020, 269, 128714. [Google Scholar] [CrossRef]
- Malavolti, M.; Fairweather-Tait, S.J.; Malagoli, C.; Vescovi, L.; Vinceti, M.; Filippini, T. Lead exposure in an Italian population: Food content, dietary intake and risk assessment. Food Res. Int. 2020, 137, 109370. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, U.; Mahmood, M.H.-R.; Hussain, S.; Abbas, F.; Anjum, S.A.; Tang, X. Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. Chemosphere 2020, 248, 126003. [Google Scholar] [CrossRef]
- Li, X.; Ming, Q.; Cai, R.; Yue, T.; Yuan, Y.; Gao, Z.; Wang, Z. Biosorption of Cd2+ and Pb2+ from apple juice by the magnetic nanoparticles functionalized lactic acid bacteria cells. Food Control 2020, 109, 106916. [Google Scholar] [CrossRef]
- Leibler, J.H.; Basra, K.; Ireland, T.; McDonagh, A.; Ressijac, C.; Heiger-Bernays, W.; Vorhees, D.; Rosenbaum, M. Lead exposure to children from consumption of backyard chicken eggs. Environ. Res. 2018, 167, 445–452. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, C.; Ma, H.; Yang, Z.; Yang, K.; Liu, F.; Li, K.; Yang, Z.; Tang, S.; Guo, F.; et al. Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: Contamination assessment and source apportionment. J. Geochem. Explor. 2020, 208, 106403. [Google Scholar] [CrossRef]
- Bordon, I.C.; Emerenciano, A.K.; Melo, J.R.C.; da Silva, J.R.M.C.; Favaro, D.I.T.; Gusso-Choueri, P.K.; de Campos, B.G.; de Souza Abessa, D.M. Implications on the Pb bioaccumulation and metallothionein levels due to dietary and waterborne exposures: The Callinectes danae case. Ecotoxicol. Environ. Saf. 2018, 162, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, W.; Gallagher, D.L.; Gohlke, J.M.; Dietrich, A.M. Children and adults are exposed to dual risks from ingestion of water and inhalation of ultrasonic humidifier particles from Pb-containing water. Sci. Total Environ. 2021, 791, 148248. [Google Scholar] [CrossRef]
- Chaparro Leal, L.T.; Guney, M.; Zagury, G.J. In vitro dermal bioaccessibility of selected metals in contaminated soil and mine tailings and human health risk characterization. Chemosphere 2018, 197, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Tang, C.; Yu, J.; Meng, S.; Zhang, W. Exposure to lead increases the risk of meningioma and brain cancer: A meta-analysis. J. Trace Elem. Med. Biol. 2020, 60, 126474. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, B.; Meyyazhagan, A.; Chinnappan, A.J.; Alagamuthu, K.K.; Shanmugam, S.; Al-Dhabi, N.A.; Mohammed Ghilan, A.K.; Duraipandiyan, V.; Valan Arasu, M. Occupational health hazards on workers exposure to lead (Pb): A genotoxicity analysis. J. Infect. Public Health 2020, 13, 527–531. [Google Scholar] [CrossRef]
- Gąssowska, M.; Baranowska-Bosiacka, I.; Moczydłowska, J.; Tarnowski, M.; Pilutin, A.; Gutowska, I.; Strużyńska, L.; Chlubek, D.; Adamczyk, A. Perinatal exposure to lead (Pb) Promotes Tau phosphorylation in the rat brain in a GSK-3β and CDK5 dependent manner: Relevance to neurological disorders. Toxicology 2016, 347–349, 17–28. [Google Scholar] [CrossRef]
- Souza, J.P.; Cerveira, C.; Miceli, T.M.; Moraes, D.P.; Mesko, M.F.; Pereira, J.S.F. Evaluation of sample preparation methods for cereal digestion for subsequent As, Cd, Hg and Pb determination by AAS-based techniques. Food Chem. 2020, 321, 126715. [Google Scholar] [CrossRef]
- Antinori, V.; Bakke, H.; Beusch, W.; Bloodworth, I.J.; Caliandro, R.; Carrrer, N.; Bari, D.D.; Liberto, S.D.; Elia, D.; Evans, D.; et al. Transverse mass spectra of strange and multiply-strange particles in Pb-Pb collisions at 158 A GeV/c. Nucl. Phys. A 1999, 661, 481–484. [Google Scholar] [CrossRef]
- Borges, C.S.; Weindorf, D.C.; Nascimento, D.C.; Curi, N.; Guilherme, L.R.G.; Carvalho, G.S.; Ribeiro, B.T. Comparison of portable X-ray fluorescence spectrometry and laboratory-based methods to assess the soil elemental composition: Applications for wetland soils. Environ. Technol. Innov. 2020, 19, 100826. [Google Scholar] [CrossRef]
- Papaslioti, E.M.; Parviainen, A.; Román Alpiste, M.J.; Marchesi, C.; Garrido, C.J. Quantification of potentially toxic elements in food material by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) via pressed pellets. Food Chem. 2019, 274, 726–732. [Google Scholar] [CrossRef]
- Togao, M.; Nakayama, S.M.M.; Ikenaka, Y.; Mizukawa, H.; Makino, Y.; Kubota, A.; Matsukawa, T.; Yokoyama, K.; Hirata, T.; Ishizuka, M. Bioimaging of Pb and STIM1 in mice liver, kidney and brain using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and immunohistochemistry. Chemosphere 2020, 238, 124581. [Google Scholar] [CrossRef]
- Assaifan, A.K.; Hezam, M.; Al-Gawati, M.A.; Alzahrani, K.E.; Alswieleh, A.; Arunachalam, P.; Al-Mayouf, A.; Alodhayb, A.; Albrithen, H. Label-free and simple detection of trace Pb(II) in tap water using non-faradaic impedimetric sensors. Sens. Actuators Phys. 2021, 329, 112833. [Google Scholar] [CrossRef]
- Peng, L.; Xi, Q.; Wang, X.; Kan, Y.; Jiang, J.; Yu, R. Determination of Lead (II) by a Nitrocellulose Membrane Fluorescent Biosensor Based on G-Quadruplex Conformational Changes. Anal. Lett. 2014, 47, 2341–2349. [Google Scholar] [CrossRef]
- Wang, H.; Wang, D.M.; Huang, C.Z. Highly sensitive chemiluminescent detection of lead ion based on its displacement of potassium in G-Quadruplex DNAzyme. Analyst 2015, 140, 5742–5747. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; Luo, Y.; Liu, L.; He, L.; Xing, H.; Zhou, P. Label-free fluorescent sensor for lead ion detection based on Lead (II)-stabilized G-Quadruplex formation. Anal. Biochem. 2014, 462, 19–25. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zhu, Y.; Zhou, X.; Xiang, Y.; He, M.; Zeng, S. Fully integrated graphene electronic biosensor for label-free detection of Lead (II) ion based on G-Quadruplex structure-switching. Biosens. Bioelectron. 2017, 89, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Nie, D.; Qiu, C.; Zheng, Q.; Wu, H.; Ye, P.; Hao, Y.; Fu, F.; Chen, G. A G-Quadruplex based label-free fluorescent biosensor for lead ion. Biosens. Bioelectron. 2012, 35, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hou, X.-M.; Wang, P.-Y.; Xi, X.-G.; Li, M. Direct measurement of sequential folding pathway and energy landscape of human telomeric G-Quadruplex structures. J. Am. Chem. Soc. 2013, 135, 6423–6426. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, Y.; Deng, S.; Wu, C.; Deng, R.; He, G.; Zhou, M.; Zhong, K.; Gao, H. Metal-induced G-Quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea. Food Chem. 2020, 343, 128425. [Google Scholar] [CrossRef]
- Nicoludis, J.M.; Barrett, S.P.; Mergny, J.-L.; Yatsunyk, L.A. Interaction of human telomeric DNA with N-methyl mesoporphyrin IX. Nucleic Acids Res. 2012, 40, 5432–5447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Wang, E.; Dong, S. Potassium−lead-switched G-quadruplexes: A new class of DNA logic gates. J. Am. Chem. Soc. 2009, 131, 15082–15083. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Li, Y.; Ma, S.; Wang, M.; You, T. Hairpin DNA assisted dual-ratiometric electrochemical aptasensor with high reliability and anti-interference ability for simultaneous detection of aflatoxin B1 and ochratoxin A. Biosens. Bioelectron. 2020, 174, 112654. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Zhang, K.; Wang, L.; Ren, X.; Sun, Y.; Li, J. DNA-sequence-encoded rolling circle amplicon for single-cell RNA imaging. Chem 2018, 4, 1373–1386. [Google Scholar] [CrossRef]
- Chen, F.; Lu, Q.; Huang, L.; Liu, B.; Liu, M.; Zhang, Y.; Liu, J. DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K+ and pH in Lysosomes. Angew. Chem. 2021, 133, 5513–5518. [Google Scholar] [CrossRef]
- Li, T.; Dong, S.; Wang, E. A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity. J. Am. Chem. Soc. 2010, 132, 13156–13157. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.; Wang, L.; Feng, Q.; Niu, L.; Zhao, Z.; Wang, P.; Song, C.; Li, X.; Zhang, Z. Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment. Environ. Pollut. 2021, 280, 116879. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, D.; Wang, G.; Zhang, S.; Cheng, Z.; Xian, J.; Pu, Y.; Li, T.; Jia, Y.; Li, Y.; et al. Removal of Pb, Zn, Ni and Cr from industrial sludge by biodegradable washing agents: Caboxyethylthiosuccinic acid and itaconic-acrylic acid. J. Environ. Chem. Eng. 2021, 9, 105846. [Google Scholar] [CrossRef]
- Es-sahbany, H.; Hsissou, R.; El Hachimi, M.L.; Allaoui, M.; Nkhili, S.; Elyoubi, M.S. Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mater. Today Proc. 2021, 45, 7290–7298. [Google Scholar] [CrossRef]
- Yuan, Y.; Cave, M.; Xu, H.; Zhang, C. Exploration of spatially varying relationships between Pb and Al in Urban soils of London at the regional scale using geographically weighted regression (GWR). J. Hazard. Mater. 2020, 393, 122377. [Google Scholar] [CrossRef]
- Chandio, T.A.; Khan, M.N.; Muhammad, M.T.; Yalcinkaya, O.; Kayis, A.F. Co-exposure of neurotoxic contaminants (Pb and Mn) in drinking water of Zhob District, Baluchistan Pakistan. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100328. [Google Scholar] [CrossRef]
- Xing, Y.; Luo, X.; Liu, S.; Wan, W.; Huang, Q.; Chen, W. A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater. J. Clean. Prod. 2021, 311, 127514. [Google Scholar] [CrossRef]
- Tong, Y.; Yue, T.; Gao, J.; Wang, K.; Wang, C.; Zuo, P.; Zhang, X.; Tong, L.; Liang, Q. Partitioning and emission characteristics of Hg, Cr, Pb, and As among air pollution control devices in chinese coal-fired industrial boilers. Energy Fuels 2020, 34, 7067–7075. [Google Scholar] [CrossRef]
- Du, Y.; Li, B.; Wang, E. “Fitting” makes “sensing” simple: Label-free detection strategies based on nucleic acid aptamers. Acc. Chem. Res. 2013, 46, 203–213. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, H.; Wan, R.; Khan, M.R.; Wang, N.; Busquets, R.; Deng, R.; He, Q.; Zhao, Z. Ratiometric G-Quadruplex Assay for Robust Lead Detection in Food Samples. Biosensors 2021, 11, 274. https://doi.org/10.3390/bios11080274
Liu Y, Yang H, Wan R, Khan MR, Wang N, Busquets R, Deng R, He Q, Zhao Z. Ratiometric G-Quadruplex Assay for Robust Lead Detection in Food Samples. Biosensors. 2021; 11(8):274. https://doi.org/10.3390/bios11080274
Chicago/Turabian StyleLiu, Yumei, Hao Yang, Rui Wan, Mohammad Rizwan Khan, Nan Wang, Rosa Busquets, Ruijie Deng, Qiang He, and Zhifeng Zhao. 2021. "Ratiometric G-Quadruplex Assay for Robust Lead Detection in Food Samples" Biosensors 11, no. 8: 274. https://doi.org/10.3390/bios11080274
APA StyleLiu, Y., Yang, H., Wan, R., Khan, M. R., Wang, N., Busquets, R., Deng, R., He, Q., & Zhao, Z. (2021). Ratiometric G-Quadruplex Assay for Robust Lead Detection in Food Samples. Biosensors, 11(8), 274. https://doi.org/10.3390/bios11080274