Ratiometric Colorimetric Detection of Nitrite Realized by Stringing Nanozyme Catalysis and Diazotization Together
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Preparation and Characterization of Hollow MnFeO
2.3. Oxidase-Mimicking Characteristic of Hollow MnFeO Catalyzing TMB Oxidation
2.4. Nitrite-Induced Diazotization of TMBox
2.5. Ratiometric Colorimetric Analysis of Nitrite
3. Results and Discussion
3.1. Synthesis and Characterization of Hollow MnFeO
3.2. Oxidase-Mimicking Characteristic of Hollow MnFeO Catalyzing the Oxidation of TMB to TMBox
3.3. Nitrite Induces the Diazotization of TMBox
3.4. High-Performance Ratiometric Colorimetric Analysis of Nitrite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, Q.-H.; Yu, L.-J.; Liu, Y.; Lin, L.; Lu, R.-G.; Zhu, J.-P.; He, L.; Lu, Z.-L. Methods for the Detection and Determination of Nitrite and Nitrate: A Review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef]
- Xiang, G.; Wang, Y.; Zhang, H.; Fan, H.; Fan, L.; He, L.; Jiang, X.; Zhao, W. Carbon Dots Based Dual-Emission Silica Nanoparticles as Ratiometric Fluorescent Probe for Nitrite Determination in Food Samples. Food Chem. 2018, 260, 13–18. [Google Scholar] [CrossRef]
- Kimshapiro, D.; Gladwin, M.; Patel, R.; Hogg, N. The Reaction between Nitrite and Hemoglobin: The Role of Nitrite in Hemoglobin-Mediated Hypoxic Vasodilation. J. Inorg. Biochem. 2005, 99, 237–246. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Helaleh, M.I.; Korenaga, T. Ion Chromatographic Method for Simultaneous Determination of Nitrate and Nitrite in Human Saliva. J. Chromatogr. B Biomed. Sci. Appl. 2000, 744, 433–437. [Google Scholar] [CrossRef]
- He, L.; Zhang, K.; Wang, C.; Luo, X.; Zhang, S. Effective Indirect Enrichment and Determination of Nitrite Ion in Water and Biological Samples Using Ionic Liquid-Dispersive liquid–liquid Microextraction Combined with High-Performance Liquid Chromatography. J. Chromatogr. A 2011, 1218, 3595–3600. [Google Scholar] [CrossRef]
- Kodamatani, H.; Yamazaki, S.; Saito, K.; Tomiyasu, T.; Komatsu, Y. Selective Determination Method for Measurement of Nitrite and Nitrate in Water Samples Using High-Performance Liquid Chromatography with Post-Column Photochemical Reaction and Chemiluminescence Detection. J. Chromatogr. A 2009, 1216, 3163–3167. [Google Scholar] [CrossRef]
- Zhu, N.; Xu, Q.; Li, S.; Gao, H. Electrochemical Determination of Nitrite Based on poly(amidoamine) Dendrimer-Modified Carbon Nanotubes for Nitrite Oxidation. Electrochem. Commun. 2009, 11, 2308–2311. [Google Scholar] [CrossRef]
- Kozub, B.R.; Rees, N.; Compton, R.G. Electrochemical Determination of Nitrite at a Bare Glassy Carbon Electrode; Why Chemically Modify Electrodes? Sens. Actuators B Chem. 2010, 143, 539–546. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, J.-P.; Gai, L.; Li, D.-J.; Li, Y. An Amperometric Sensor Based on Ionic Liquid and Carbon Nanotube Modified Composite Electrode for the Determination of Nitrite in Milk. Sens. Actuators B Chem. 2013, 181, 65–70. [Google Scholar] [CrossRef]
- Jiang, J.; Fan, W.; Du, X. Nitrite Electrochemical Biosensing Based on Coupled Graphene and Gold Nanoparticles. Biosens. Bioelectron. 2014, 51, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Hajian, A.; Rezaei, M.; Shirzadmehr, A. Composite of Cu Metal Nanoparticles-Multiwall Carbon Nanotubes-Reduced Graphene Oxide as a Novel and High Performance Platform of the Electrochemical Sensor for Simultaneous Determination of Nitrite and Nitrate. J. Hazard. Mater. 2017, 324, 762–772. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Y.; Gong, J.; Ma, Y.; Sun, J.; Li, T.; Wang, J. Surface Engineering of Carbon Fiber Paper Toward Exceptionally High-Performance and Stable Electrochemical Nitrite Sensing. ACS Sens. 2019, 4, 2980–2987. [Google Scholar] [CrossRef]
- Han, J.; Zhang, C.; Liu, F.; Liu, B.; Han, M.; Zou, W.; Yang, L.; Zhang, Z. Upconversion Nanoparticles for Ratiometric Fluorescence Detection of Nitrite. Analyst 2014, 139, 3032–3038. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, S.; Wang, G.; Zhang, Y.; Zhao, H. Fluorescence Determination of Nitrite in Water Using Prawn-Shell Derived Nitrogen-Doped Carbon Nanodots as Fluorophores. ACS Sens. 2016, 1, 875–881. [Google Scholar] [CrossRef]
- Li, B.-L.; Li, Y.-S.; Gao, X.-F. Fluorescence Quenching Capillary Analysis for Determining Trace-Level Nitrite in Food Based on the Citric acid/ethylenediamine nanodots/Nitrite Reaction. Food Chem. 2019, 274, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Vikraman, A.E.; Jesny, S.; Kumar, K.G. “Turn On” Fluorescence Determination of Nitrite Using Green Synthesized Carbon Nanoparticles. J. Fluoresc. 2015, 26, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Chen, C.; Zhao, D.; Yang, F.; Yang, X. A Simple and Sensitive Assay for the Determination of Nitrite Using Folic Acid as the Fluorescent Probe. Anal. Methods 2014, 7, 1543–1548. [Google Scholar] [CrossRef]
- Ren, H.-H.; Fan, Y.; Wang, B.; Yu, L.-P. Polyethylenimine-Capped CdS Quantum Dots for Sensitive and Selective Detection of Nitrite in Vegetables and Water. J. Agric. Food Chem. 2018, 66, 8851–8858. [Google Scholar] [CrossRef]
- Daniel, W.L.; Han, M.S.; Lee, J.-S.; Mirkin, C.A. Colorimetric Nitrite and Nitrate Detection with Gold Nanoparticle Probes and Kinetic End Points. J. Am. Chem. Soc. 2009, 131, 6362–6363. [Google Scholar] [CrossRef] [PubMed]
- Adarsh, N.; Shanmugasundaram, M.; Ramaiah, D. Efficient Reaction Based Colorimetric Probe for Sensitive Detection, Quantification, and On-Site Analysis of Nitrite Ions in Natural Water Resources. Anal. Chem. 2013, 85, 10008–10012. [Google Scholar] [CrossRef]
- Xiao, N.; Yu, C. Rapid-Response and Highly Sensitive Noncross-Linking Colorimetric Nitrite Sensor Using 4-Aminothiophenol Modified Gold Nanorods. Anal. Chem. 2010, 82, 3659–3663. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.; Jung, I.-B.; Kim, B.; Lee, S.-M.; Kim, S.-E.; Lee, K.-N.; Shin, D.-S. A Colorimetric Hydrogel Biosensor for Rapid Detection of Nitrite Ions. Sens. Actuators B Chem. 2018, 270, 112–118. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Qu, C.; Pan, D.; Chen, L. Highly Sensitive Label-Free Colorimetric Sensing of Nitrite Based on Etching of Gold Nanorods. Analyst 2012, 137, 5197–5200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qi, S.; Dong, Y.; Chen, X.; Xu, Y.; Ma, Y.; Chen, X. A Sensitive Colorimetric Method for the Determination of Nitrite in Water Supplies, Meat and Dairy Products Using Ionic Liquid-Modified Methyl Red as a Colour Reagent. Food Chem. 2014, 151, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.V.; Anthony, S.P. Highly Selective Silver Nanoparticles Based Label Free Colorimetric Sensor for Nitrite Anions. Anal. Chim. Acta 2014, 842, 57–62. [Google Scholar] [CrossRef]
- Li, T.; Li, Y.; Zhang, Y.; Dong, C.; Shen, Z.; Wu, A. A Colorimetric Nitrite Detection System with Excellent Selectivity and High Sensitivity Based on Ag@Au Nanoparticles. Analyst 2014, 140, 1076–1081. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, M.; Liu, H.; Xuan, Z.; Yang, J.; Liu, D. Janus PEGylated Gold Nanoparticles: A Robust Colorimetric Probe for Sensing Nitrite Ions in Complex Samples. Nanoscale 2017, 9, 1811–1815. [Google Scholar] [CrossRef]
- Lo, H.S.; Lo, K.-W.; Yeung, C.-F.; Wong, C.-Y. Rapid Visual and Spectrophotometric Nitrite Detection by Cyclometalated Ruthenium Complex. Anal. Chim. Acta 2017, 990, 135–140. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.; Yue, G.; Yang, Z.; Wang, Y.; Rao, H.; Zhang, W.; Jin, B.; Wang, X. A Highly Selective Chromogenic Probe for the Detection of Nitrite in Food Samples. Food Chem. 2020, 317, 126361. [Google Scholar] [CrossRef]
- Murfin, L.; López-Alled, C.M.; Sedgwick, A.C.; Wenk, J.; James, T.D.; Lewis, S.E. A Simple, Azulene-Based Colorimetric Probe for the Detection of Nitrite in Water. Front. Chem. Sci. Eng. 2020, 14, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Taweekarn, T.; Wongniramaikul, W.; Limsakul, W.; Sriprom, W.; Phawachalotorn, C.; Choodum, A. A Novel Colorimetric Sensor Based on Modified Mesoporous Silica Nanoparticles for Rapid on-site Detection of Nitrite. Microchim. Acta 2020, 187, 643. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.Z.; Zhuang, J.; Nie, L.; Zhang, J.B.; Zhang, Y.; Gu, N.; Wang, T.H.; Feng, J.; Yang, D.L.; Perrett, S.; et al. Intrinsic Peroxi-Dase-Like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, E. Nanomaterials with Enzyme-Like Characteristics (nanozymes): Next-Generation Artificial Enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-Like Characteristics (nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Liang, M.M.; Yan, X.Y. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Wei, H. Nanozymes in Bionanotechnology: From Sensing to Therapeutics and Beyond. Inorg. Chem. Front. 2016, 3, 41–60. [Google Scholar] [CrossRef]
- Niu, X.; Li, X.; Lyu, Z.; Pan, J.; Ding, S.; Ruan, X.; Zhu, W.; Du, D.; Lin, Y. Metal–organic Framework Based Nanozymes: Promising Materials for Biochemical Analysis. Chem. Commun. 2020, 56, 11338–11353. [Google Scholar] [CrossRef]
- Song, W.; Zhao, B.; Wang, C.; Ozaki, Y.; Lu, X. Functional Nanomaterials with Unique Enzyme-Like Characteristics for Sensing Applications. J. Mater. Chem. B 2019, 7, 850–875. [Google Scholar] [CrossRef]
- Niu, X.; He, Y.; Pan, J.; Li, X.; Qiu, F.; Yan, Y.; Shi, L.; Zhao, H.; Lan, M. Uncapped Nanobranch-Based CuS Clews Used as an Efficient Peroxidase Mimic Enable the Visual Detection of Hydrogen Peroxide and Glucose with Fast Response. Anal. Chim. Acta 2016, 947, 42–49. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.J.; Du, D.; Ni, L.; Pan, J.M.; Niu, X.H. Emerging Applications of Nanozymes in Environmental Analysis: Opportu-Nities and Trends. TrAC Trends Anal. Chem. 2019, 120, 115653. [Google Scholar] [CrossRef]
- Xue, Q.S.; Niu, X.H.; Liu, P.; Wang, M.Z.; Peng, Y.X.; Peng, H.B.; Li, X. Analyte-Triggered Citrate-Stabilized Au Nanoparticle Ag-Gregation with Accelerated Peroxidase-Mimicking Activity for Catalysis-Based Colorimetric Sensing of Arsenite. Sens. Actuators B Chem. 2021, 334, 129650. [Google Scholar] [CrossRef]
- Wu, S.; Guo, D.; Xu, X.; Pan, J.; Niu, X. Colorimetric Quantification and Discrimination of Phenolic Pollutants Based on Peroxidase-Like Fe3O4 Nanoparticles. Sens. Actuators B Chem. 2020, 303, 127225. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.X.; Hu, Z.; Liu, P.; Ye, K.; Pan, J.M.; Niu, X.H. Smartphone-Assisted off-on Photometric Determination of Phosphate Ion Based on Target-Promoted Peroxidase-Mimetic Activity of Porous CexZr1-XO2 (x ≥ 0.5). Nanocomposites. Environ. Res. 2020, 189, 109921. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, X.; Xu, X.; Niu, X.; Wang, M.; Zhu, H.; Pan, J. Analyte-Triggered Oxidase-Mimetic Activity Loss of Ag3PO4/UiO-66 Enables Colorimetric Detection of Malathion Completely Free from Bioenzymes. Sens. Actuators B Chem. 2021, 338, 129866. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Xu, X.; Ye, K.; Wang, L.; Zhu, H.; Wang, M.; Niu, X. Integrating Peroxidase-Mimicking Activity with Photoluminescence into One Framework Structure for High-Performance Ratiometric Fluorescent Pesticide Sensing. Sens. Actuators B Chem. 2021, 328, 129024. [Google Scholar] [CrossRef]
- Huang, L.; Sun, D.; Pu, H.; Wei, Q. Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1496–1513. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Du, J.; Liu, W.E.; Guo, Y.L.; Wu, G.F.; Qi, W.N.; Lu, X.Q. Enhanced His@AuNCs Oxidase-Like Activity by Reduced Graphene Oxide and Its Application for Colorimetric and Electrochemical Detection of Nitrite. Anal. Bioanal. Chem. 2019, 411, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, O.; Zolotovskaya, S.; Abdolvand, A.; Daeid, N.N. Rapid and Highly Selective Colorimetric Detection of Nitrite Based on the Catalytic-Enhanced Reaction of Mimetic Au Nanoparticle-CeO2 Nanoparticle-Graphene Oxide Hybrid Nanozyme. Talanta 2021, 224, 121875. [Google Scholar] [CrossRef]
- Wu, S.; Zhuang, G.; Wei, J.; Zhuang, Z.; Yu, Y. Shape Control of core–shell MOF@MOF and Derived MOF Nanocages via Ion Modulation in a One-Pot Strategy. J. Mater. Chem. A 2018, 6, 18234–18241. [Google Scholar] [CrossRef]
- Zheng, F.C.; Zhu, D.Q.; Shi, X.H.; Chen, Q.W. Metal–organic Framework-Derived Porous Mn1.8Fe1.2O4 Nanocubes with an in-Terconnected Channel Structure as High-Performance Anodes for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3, 2815–2824. [Google Scholar] [CrossRef]
- Lu, Z.; Dang, Y.; Dai, C.; Zhang, Y.; Zou, P.; Du, H.; Zhang, Y.; Sun, M.; Rao, H.; Wang, Y. Hollow MnFeO Oxide Derived from MOF@MOF With Multiple Enzyme-Like Activities for Multifunction Colorimetric Assay of Biomolecules and Hg2+. J. Hazard. Mater. 2021, 403, 123979. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.H.; Mohseni, S.; Asadnia, A.; Kerdari, H. Synthesis and Microwave Absorbing Properties of polyaniline/MnFe2O4 Nanocomposite. J. Alloy. Compd. 2011, 509, 4682–4687. [Google Scholar] [CrossRef]
- Cheng, H.; Lin, S.; Muhammad, F.; Lin, Y.-W.; Wei, H. Rationally Modulate the Oxidase-Like Activity of Nanoceria for Self-Regulated Bioassays. ACS Sens. 2016, 1, 1336–1343. [Google Scholar] [CrossRef]
- Ye, K.; Niu, X.; Song, H.; Wang, L.; Peng, Y. Combining CeVO4 Oxidase-Mimetic Catalysis with Hexametaphosphate Ion Induced Electrostatic Aggregation for Photometric Sensing of Alkaline Phosphatase Activity. Anal. Chim. Acta 2020, 1126, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Chen, J.; Kong, L.; Zhu, F.; Feng, Z.; Zhan, J. Oxygen Vacancies Modulation Mn3O4 Nanozyme with Enhanced Oxidase-Mimicking Performance for L-Cysteine Detection. Sens. Actuators B Chem. 2021, 333, 129560. [Google Scholar] [CrossRef]
- Ye, K.; Zhang, M.L.; Liu, P.; Liu, B.X.; Xu, X.C.; Li, X.; Zhu, H.J.; Wang, L.J.; Wang, M.Z.; Niu, X.H. Target-Induced Synergetic Modulation of Electrochemical Tag Concentration and Electrode Surface Passivation for One-Step Sampling Filtration-Free De-Tection of Acid Phosphatase Activity. Talanta 2021, 233, 122500. [Google Scholar] [CrossRef]
- Xu, X.C.; Wu, S.W.; Guo, D.Z.; Niu, X.H. Construction of a Recyclable Oxidase-Mimicking Fe3O4@MnOx-Based Colorimetric Sensor Array for Quantifying and Identifying Chlorophenols. Anal. Chim. Acta 2020, 1107, 203–212. [Google Scholar] [CrossRef]
- Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G.F.; et al. Standardized Assays for Determining the Catalytic Activity and Kinetics of Peroxidase-Like Nanozymes. Nat. Protoc. 2018, 13, 1506–1520. [Google Scholar] [CrossRef]
- Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 2308–2312. [Google Scholar] [CrossRef]
- Yu, C.-J.; Chen, T.-H.; Jiang, J.-Y.; Tseng, W.-L. Lysozyme-Directed Synthesis of Platinum Nanoclusters as a Mimic Oxidase. Nanoscale 2014, 6, 9618–9624. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jing, X.; Bi, X.; Bai, B.; Wang, X. Quantitative Detection of Nitrite in Food Samples Based on Digital Image Colourimetry by Smartphone. ChemistrySelect 2020, 5, 9952–9956. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small Molecule-Based Ratiometric Fluorescence Probes for Cations, Anions, and Biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Spiked (μM) | Detected by Our Method (μM) | RSD (%, N = 3) | Recovery Rate (%) | Detected by the Commercial Kit | RSD (%, N = 3) | Recovery Rate (%) |
---|---|---|---|---|---|---|---|
Sausage | 0 | 0.74 | 9.9 | NA a | ND b | NA | NA |
20 | 20.57 | 1.2 | 99.2 | 21.33 | 0.2 | 106.6 | |
Pickle | 0 | 0.99 | 3.7 | NA | ND | NA | NA |
20 | 20.82 | 1.6 | 99.2 | 21.72 | 3.8 | 108.6 | |
Salted egg yolk | 0 | 0.77 | 3.6 | NA | ND | NA | NA |
20 | 20.65 | 0.7 | 99.4 | 18.77 | 1.0 | 93.8 | |
Salted egg white | 0 | 1.08 | 3.1 | NA | ND | NA | NA |
20 | 21.00 | 1.6 | 99.6 | 16.21 | 3.9 | 81.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Liu, P.; Zhu, H.; Liu, B.; Niu, X. Ratiometric Colorimetric Detection of Nitrite Realized by Stringing Nanozyme Catalysis and Diazotization Together. Biosensors 2021, 11, 280. https://doi.org/10.3390/bios11080280
Wang M, Liu P, Zhu H, Liu B, Niu X. Ratiometric Colorimetric Detection of Nitrite Realized by Stringing Nanozyme Catalysis and Diazotization Together. Biosensors. 2021; 11(8):280. https://doi.org/10.3390/bios11080280
Chicago/Turabian StyleWang, Mengzhu, Peng Liu, Hengjia Zhu, Bangxiang Liu, and Xiangheng Niu. 2021. "Ratiometric Colorimetric Detection of Nitrite Realized by Stringing Nanozyme Catalysis and Diazotization Together" Biosensors 11, no. 8: 280. https://doi.org/10.3390/bios11080280
APA StyleWang, M., Liu, P., Zhu, H., Liu, B., & Niu, X. (2021). Ratiometric Colorimetric Detection of Nitrite Realized by Stringing Nanozyme Catalysis and Diazotization Together. Biosensors, 11(8), 280. https://doi.org/10.3390/bios11080280