Quantitative Changes in Muscular and Capillary Oxygen Desaturation Measured by Optical Sensors during Continuous Positive Airway Pressure Titration for Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somers, V.K. Sleep—A new cardiovascular frontier. N. Engl. J. Med. 2005, 353, 2070–2073. [Google Scholar] [CrossRef] [PubMed]
- Lembo, D.; Caroccia, F.; Lopes, C.; Moscagiuri, F.; Sinjari, B.; D’Attilio, M. Obstructive Sleep Apnea and Periodontal Disease: A Systematic Review. Medicina 2021, 57, 640. [Google Scholar] [CrossRef]
- Botros, N.; Concato, J.; Mohsenin, V.; Selim, B.; Doctor, K.; Yaggi, H.K. Obstructive sleep apnea as a risk factor for type 2 diabetes. Am. J. Med. 2009, 122, 1122–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calik, M.W. Treatments for Obstructive Sleep Apnea. J. Clin. Outcomes Manag. 2016, 23, 181–192. [Google Scholar] [PubMed]
- Sharma, S.K.; Agrawal, S.; Damodaran, D.; Sreenivas, V.; Kadhiravan, T.; Lakshmy, R.; Jagia, P.; Kumar, A. CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N. Engl. J. Med. 2011, 365, 2277–2286. [Google Scholar] [CrossRef] [Green Version]
- Basner, R.C. Continuous positive airway pressure for obstructive sleep apnea. N. Engl. J. Med. 2007, 356, 1751–1758. [Google Scholar] [CrossRef]
- Randerath, W.; Bassetti, C.L.; Bonsignore, M.R.; Farre, R.; Ferini-Strambi, L.; Grote, L.; Hedner, J.; Kohler, M.; Martinez-Garcia, M.A.; Mihaicuta, S.; et al. Challenges and perspectives in obstructive sleep apnoea: Report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society. Eur. Respir. J. 2018, 52, 1702616. [Google Scholar] [CrossRef]
- Penzel, T.; Schobel, C.; Fietze, I. New technology to assess sleep apnea: Wearables, smartphones, and accessories. F1000Research 2018, 7, 413. [Google Scholar] [CrossRef] [Green Version]
- Young, T.; Evans, L.; Finn, L.; Palta, M. Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep 1997, 20, 705–706. [Google Scholar] [CrossRef] [PubMed]
- Flemons, W.W.; Douglas, N.J.; Kuna, S.T.; Rodenstein, D.O.; Wheatley, J. Access to diagnosis and treatment of patients with suspected sleep apnea. Am. J. Respir. Crit. Care. Med. 2004, 169, 668–672. [Google Scholar] [CrossRef]
- Santilli, M.; Manciocchi, E.; D’Addazio, G.; Di Maria, E.; D’Attilio, M.; Femminella, B.; Sinjari, B. Prevalence of Obstructive Sleep Apnea Syndrome: A Single-Center Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 277. [Google Scholar] [CrossRef] [PubMed]
- Drager, L.F. New Challenges for Sleep Apnea Research: Simple Diagnostic Tools, Biomarkers, New Treatments and Precision Medicine. Sleep Sci. 2017, 10, 55–56. [Google Scholar] [CrossRef]
- Fitbit. How Do I Track My Estimated Oxygen Variation in the Fitbit App? Available online: https://help.fitbit.com/articles/en_US/Help_article/1876.htm (accessed on 8 July 2021).
- Garmin. Pulse Ox Frequently Asked Questions for Garmin Watches. Available online: https://support.garmin.com/en-US/?faq=SK2Y9a9aBp5D6n4sXmPBG7 (accessed on 8 July 2021).
- Huami. Amazfit X Bow to the Future. Available online: https://www.amazfit.com/en/amazfit-x.html (accessed on 8 July 2021).
- Huawei. Huawei Watch 3. Available online: https://consumer.huawei.com/en/wearables/watch-3/ (accessed on 8 July 2021).
- Humon. Humon Muscle Oxygen Sensor. Available online: https://humon.io/ (accessed on 8 July 2021).
- Farzam, P.; Starkweather, Z.; Franceschini, M.A. Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle. Physiol. Rep. 2018, 6, e13664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moxy. The Science Behind Moxy. Available online: http://www.moxymonitor.com/wp-content/themes/moxymonitor/documents/Moxy_Scientific_Explanation_march2014.pdf (accessed on 8 July 2021).
- Feldmann, A.; Schmitz, R.; Erlacher, D. Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: Reliability and validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Artinis. PortaMon. Available online: https://www.artinis.com/portamon (accessed on 8 July 2021).
- Biofourmis, A.G. What Does the Everion Measure? Available online: https://support.biofourmis.com/hc/en-us/articles/213613165-What-does-the-Everion-measure (accessed on 8 July 2021).
- Villringer, A.; Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 1997, 20, 435–442. [Google Scholar] [CrossRef]
- Delpy, D.T.; Cope, M.; van der Zee, P.; Arridge, S.; Wray, S.; Wyatt, J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 1988, 33, 1433–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Mata Pavia, J.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85 Pt 1, 6–27. [Google Scholar] [CrossRef]
- Chan, E.D.; Chan, M.M. Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations. Respir. Med. 2013, 107, 789–799. [Google Scholar] [CrossRef] [Green Version]
- König, V.; Huch, R.; Huch, A. Reflectance Pulse Oximetry—Principles and Obstetric Application in the Zurich System. J. Clin. Monit. Comput. 1998, 14, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, M.; Romem, A.; Koppel, R. Pulse oximetry: Fundamentals and technology update. Med. Devices (Auckl. N. Z.) 2014, 7, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Menghini, L.; Cellini, N.; Goldstone, A.; Baker, F.C.; de Zambotti, M. A standardized framework for testing the performance of sleep-tracking technology: Step-by-step guidelines and open-source code. Sleep 2021, 44, zsaa170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qi, M.; Hugli, G.; Khatami, R. The Challenges and Pitfalls of Detecting Sleep Hypopnea Using a Wearable Optical Sensor: Comparative Study. J. Med. Internet Res. 2021, 23, e24171. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Kushida, C.A.; Kryger, M.H.; Soto-Calderon, H.; Staley, B.; Kuna, S.T. Respiratory event detection by a positive airway pressure device. Sleep 2012, 35, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.E.; Hwangbo, Y.; Bae, J.H.; Yang, K.I. Accuracy of residual apnea-hypopnea index obtained using the continuous positive airway pressure device: Application of new version 2.0 scoring rules for respiratory events during sleep. Sleep Breath. 2015, 19, 1335–1341. [Google Scholar] [CrossRef]
- Stepnowsky, C.; Zamora, T.; Barker, R.; Liu, L.; Sarmiento, K. Accuracy of positive airway pressure device-measured apneas and hypopneas: Role in treatment followup. Sleep Disord. 2013, 2013, 314589. [Google Scholar] [CrossRef] [Green Version]
- Weaver, T.E.; Sawyer, A.M. Adherence to continuous positive airway pressure treatment for obstructive sleep apnoea: Implications for future interventions. Indian J. Med. Res. 2010, 131, 245–258. [Google Scholar]
- Wolk, R.; Shamsuzzaman, A.S.; Somers, V.K. Obesity, sleep apnea, and hypertension. Hypertension 2003, 42, 1067–1074. [Google Scholar] [CrossRef]
- Watzman, H.M.; Kurth, C.D.; Montenegro, L.M.; Rome, J.; Steven, J.M.; Nicolson, S.C. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 2000, 93, 947–953. [Google Scholar] [CrossRef]
- Franceschini, M.A.; Thaker, S.; Themelis, G.; Krishnamoorthy, K.K.; Bortfeld, H.; Diamond, S.G.; Boas, D.A.; Arvin, K.; Grant, P.E. Assessment of infant brain development with frequency-domain near-infrared spectroscopy. Pediatr. Res. 2007, 61, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Lloyd, R.M.; Marcus, C.L.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2017. [Google Scholar]
- Fantini, S.; Sassaroli, A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front. Neurosci. 2020, 14, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantini, S.; Franceschini, M.-A.; Maier, J.S.; Walker, S.A.; Barbieri, B.B.; Gratton, E. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry. Opt. Eng. 1995, 34, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Toronov, V.; Webb, A.; Choi, J.H.; Wolf, M.; Safonova, L.; Wolf, U.; Gratton, E. Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging. Opt. Express 2001, 9, 417–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantini, S.; Franceschini, M.A.; Fishkin, J.B.; Barbieri, B.; Gratton, E. Quantitative determination of the absorption spectra of chromophores in strongly scattering media: A light-emitting-diode based technique. Appl. Opt. 1994, 33, 5204–5213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiser, S.; Nasseri, N.; Andresen, B.; Greisen, G.; Wolf, M. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties. Biomed. Opt. Express 2016, 7, 2973–2992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stankovic, M.R.; Maulik, D.; Rosenfeld, W.; Stubblefield, P.G.; Kofinas, A.D.; Drexler, S.; Nair, R.; Franceschini, M.A.; Hueber, D.; Gratton, E.; et al. Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets. J. Perinat. Med. 1999, 27, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Fantini, S.; Franceschini, M.; Gratton, E.; Hueber, D.; Rosenfeld, W.; Maulik, D.; Stubblefield, P.; Stankovic, M. Non-invasive optical mapping of the piglet brain in real time. Opt. Express 1999, 4, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallacoglu, B.; Sassaroli, A.; Wysocki, M.; Guerrero-Berroa, E.; Schnaider Beeri, M.; Haroutunian, V.; Shaul, M.; Rosenberg, I.H.; Troen, A.M.; Fantini, S. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy. J. Biomed. Opt. 2012, 17, 081401–081406. [Google Scholar] [CrossRef] [Green Version]
- Fantini, S.; Hueber, D.; Franceschini, M.A.; Gratton, E.; Rosenfeld, W.; Stubblefield, P.G.; Maulik, D.; Stankovic, M.R. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys. Med. Biol. 1999, 44, 1543–1563. [Google Scholar] [CrossRef] [PubMed]
- Kleiser, S.; Ostojic, D.; Andresen, B.; Nasseri, N.; Isler, H.; Scholkmann, F.; Karen, T.; Greisen, G.; Wolf, M. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: An extension. Biomed. Opt. Express 2018, 9, 86–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Schneider, M.; Laures, M.; Qi, M.; Khatami, R. The Comparisons of Cerebral Hemodynamics Induced by Obstructive Sleep Apnea with Arousal and Periodic Limb Movement with Arousal: A Pilot NIRS Study. Front. Neurosci. 2016, 10, 403. [Google Scholar] [CrossRef]
- Zhang, Z.; Khatami, R. Predominant endothelial vasomotor activity during human sleep: A near-infrared spectroscopy study. Eur. J. Neurosci. 2014, 40, 3396–3404. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression—An Approach to Regression-Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Xu, R. Measuring explained variation in linear mixed effects models. Stat. Med. 2003, 22, 3527–3541. [Google Scholar] [CrossRef]
- Kandel, G.; Aberman, A. Mixed venous oxygen saturation. Its role in the assessment of the critically ill patient. Arch. Intern. Med. 1983, 143, 1400–1402. [Google Scholar] [CrossRef]
- Benni, P.B.; MacLeod, D.; Ikeda, K.; Lin, H.M. A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements. J. Clin. Monit. Comput. 2018, 32, 269–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreeger, R.N.; Ramamoorthy, C.; Nicolson, S.C.; Ames, W.A.; Hirsch, R.; Peng, L.F.; Glatz, A.C.; Hill, K.D.; Hoffman, J.; Tomasson, J.; et al. Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease. Ann. Thorac. Surg. 2012, 94, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Bickler, P.E.; Feiner, J.R.; Rollins, M.D. Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers. Anesth. Analg. 2013, 117, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Henson, L.C.; Calalang, C.; Temp, J.A.; Ward, D.S. Accuracy of a cerebral oximeter in healthy volunteers under conditions of isocapnic hypoxia. Anesthesiology 1998, 88, 58–65. [Google Scholar] [CrossRef]
- Shah, N.; Trivedi, N.K.; Clack, S.L.; Shah, M.; Shah, P.P.; Barker, S. Impact of hypoxemia on the performance of cerebral oximeter in volunteer subjects. J. Neurosurg. Anesthesiol. 2000, 12, 201–209. [Google Scholar] [CrossRef]
- Benni, P.B.; Chen, B.; Dykes, F.D.; Wagoner, S.F.; Heard, M.; Tanner, A.J.; Young, T.L.; Rais-Bahrami, K.; Rivera, O.; Short, B.L. Validation of the CAS neonatal NIRS system by monitoring vv-ECMO patients: Preliminary results. Adv. Exp. Med. Biol. 2005, 566, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Rais-Bahrami, K.; Rivera, O.; Short, B.L. Validation of a noninvasive neonatal optical cerebral oximeter in veno-venous ECMO patients with a cephalad catheter. J. Perinatol. 2006, 26, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, K.; MacLeod, D.B.; Grocott, H.P.; Moretti, E.W.; Ames, W.; Vacchiano, C. The accuracy of a near-infrared spectroscopy cerebral oximetry device and its potential value for estimating jugular venous oxygen saturation. Anesth. Analg. 2014, 119, 1381–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redford, D.; Paidy, S.; Kashif, F. Absolute and trend accuracy of a new regional oximeter in healthy volunteers during controlled hypoxia. Anesth. Analg. 2014, 119, 1315–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschini, M.A.; Boas, D.A.; Zourabian, A.; Diamond, S.G.; Nadgir, S.; Lin, D.W.; Moore, J.B.; Fantini, S. Near-infrared spiroximetry: Noninvasive measurements of venous saturation in piglets and human subjects. J. Appl. Physiol. 2002, 92, 372–384. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, M.J.; Tarnopolsky, M.A.; Green, H.J.; Hughson, R.L. Comparison of femoral blood gases and muscle near-infrared spectroscopy at exercise onset in humans. J. Appl. Physiol. 1999, 86, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Imadojemu, V.A.; Gleeson, K.; Gray, K.S.; Sinoway, L.I.; Leuenberger, U.A. Obstructive apnea during sleep is associated with peripheral vasoconstriction. Am. J. Respir. Crit. Care. Med. 2002, 165, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Kraiczi, H.; Hedner, J.; Peker, Y.; Carlson, J. Increased vasoconstrictor sensitivity in obstructive sleep apnea. J. Appl. Physiol. 2000, 89, 493–498. [Google Scholar] [CrossRef]
- Smith, R.P.; Veale, D.; Pepin, J.L.; Levy, P.A. Obstructive sleep apnoea and the autonomic nervous system. Sleep Med. Rev. 1998, 2, 69–92. [Google Scholar] [CrossRef]
- Andreas, S.; Hajak, G.; von Breska, B.; Ruther, E.; Kreuzer, H. Changes in heart rate during obstructive sleep apnoea. Eur. Respir. J. 1992, 5, 853–857. [Google Scholar] [PubMed]
- Tolle, F.A.; Judy, W.V.; Yu, P.L.; Markand, O.N. Reduced stroke volume related to pleural pressure in obstructive sleep apnea. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Kirszenblat, R.; Edouard, P. Validation of the Withings ScanWatch as a Wrist-Worn Reflective Pulse Oximeter: Prospective Interventional Clinical Study. J. Med. Internet Res. 2021, 23, e27503. [Google Scholar] [CrossRef]
- Reichmuth, K.J.; Dopp, J.M.; Barczi, S.R.; Skatrud, J.B.; Wojdyla, P.; Hayes, D., Jr.; Morgan, B.J. Impaired vascular regulation in patients with obstructive sleep apnea: Effects of continuous positive airway pressure treatment. Am. J. Respir. Crit. Care. Med. 2009, 180, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Spicuzza, L.; Bernardi, L.; Balsamo, R.; Ciancio, N.; Polosa, R.; Di Maria, G. Effect of treatment with nasal continuous positive airway pressure on ventilatory response to hypoxia and hypercapnia in patients with sleep apnea syndrome. Chest 2006, 130, 774–779. [Google Scholar] [CrossRef] [PubMed]
Estimate (10−2) | 95% CI (10−2) | t-Value | p-Value | |
---|---|---|---|---|
Duration of event | 2.33 | [2.00, 2.66] | 13.89 | <0.0001 |
Mean HR within events | −1.49 | [−2.14, −0.84] | −4.50 | <0.0001 |
Per-hour AHI | 0.12 | [0.025, 0.22] | 2.47 | 0.014 |
Estimate (10−2) | 95% CI (10−2) | t-Value | p-Value | |
---|---|---|---|---|
Duration of event | 7.83 | [7.01, 8.66] | 18.68 | <0.0001 |
CPAP pressures | −12.12 | [−13.93, −10.31] | −13.10 | <0.0001 |
Hypopnea–Apnea | −115.6 | [−134.9, −96.3] | −11.71 | <0.0001 |
Per-hour AHI | 1.42 | [1.14, 1.70] | 9.87 | <0.0001 |
Sleep stages | ||||
Deep sleep–light sleep | −68.82 | [−89.56, −48.08] | −6.51 | <0.0001 |
REM sleep–light sleep | −56.41 | [−82.13, −30.69] | −4.30 | <0.0001 |
AHI of diagnostic night | 1.93 | [0.35, 3.50] | 2.39 | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Qi, M.; Hügli, G.; Khatami, R. Quantitative Changes in Muscular and Capillary Oxygen Desaturation Measured by Optical Sensors during Continuous Positive Airway Pressure Titration for Obstructive Sleep Apnea. Biosensors 2022, 12, 3. https://doi.org/10.3390/bios12010003
Zhang Z, Qi M, Hügli G, Khatami R. Quantitative Changes in Muscular and Capillary Oxygen Desaturation Measured by Optical Sensors during Continuous Positive Airway Pressure Titration for Obstructive Sleep Apnea. Biosensors. 2022; 12(1):3. https://doi.org/10.3390/bios12010003
Chicago/Turabian StyleZhang, Zhongxing, Ming Qi, Gordana Hügli, and Ramin Khatami. 2022. "Quantitative Changes in Muscular and Capillary Oxygen Desaturation Measured by Optical Sensors during Continuous Positive Airway Pressure Titration for Obstructive Sleep Apnea" Biosensors 12, no. 1: 3. https://doi.org/10.3390/bios12010003
APA StyleZhang, Z., Qi, M., Hügli, G., & Khatami, R. (2022). Quantitative Changes in Muscular and Capillary Oxygen Desaturation Measured by Optical Sensors during Continuous Positive Airway Pressure Titration for Obstructive Sleep Apnea. Biosensors, 12(1), 3. https://doi.org/10.3390/bios12010003