Optical Hydrogel Detector for pH Measurements
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Fabrication of the pH Sensor
2.3. Measurement Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perk, J.; De Backer, G.; Gohlke, H.; Graham, I.; Reiner, Ž.; Verschuren, M.; Albus, C.; Benlian, P.; Boysen, G. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012) The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2012, 33, 1635–1701. [Google Scholar]
- Aoi, W.; Marunaka, Y. Importance of pH homeostasis in metabolic health and diseases: Crucial role of membrane proton transport. BioMed Res. Int. 2014, 2014, 598986. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.; Ward, G. Managing Clinical Problems in Diabetes; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Chow, E.; Liana, D.D.; Raguse, B.; Gooding, J.J. A potentiometric sensor for pH monitoring with an integrated electrochromic readout on paper. Aust. J. Chem. 2017, 70, 979–984. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K. The alkaline diet: Is there evidence that an alkaline pH diet benefits health? J. Environ. Public Health 2012, 2012, 727630. [Google Scholar] [CrossRef]
- Kuzman, D.; Žnidarčič, T.; Gros, M.; Vrhovec, S.; Svetina, S.; Žekš, B. Effect of pH on red blood cell deformability. Pflügers Arch. Eur. J. Physiol. 2000, 440, R193–R194. [Google Scholar] [CrossRef]
- Atta, S.; Khaliq, S.; Islam, A.; Javeria, I.; Jamil, T.; Athar, M.M.; Shafiq, M.I.; Ghaffar, A. Injectable biopolymer based hydrogels for drug delivery applications. Int. J. Biol. Macromol. 2015, 80, 240–245. [Google Scholar] [CrossRef]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef] [Green Version]
- Deligkaris, K.; Tadele, T.S.; Olthuis, W.; Van den Berg, A. Hydrogel-based devices for biomedical applications. Sens. Actuators B Chem. 2010, 147, 765–774. [Google Scholar] [CrossRef]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Ulijn, R.V.; Bibi, N.; Jayawarna, V.; Thornton, P.D.; Todd, S.J.; Mart, R.J.; Smith, A.M.; Gough, J.E. Bioresponsive hydrogels. Mater. Today 2007, 10, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Miyata, T.; Uragami, T.; Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 79–98. [Google Scholar] [CrossRef]
- Elsherif, M.; Moreddu, R.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Real-time optical fiber sensors based on light diffusing microlens arrays. Lab Chip 2019, 19, 2060–2070. [Google Scholar] [CrossRef] [PubMed]
- Hendi, A.; Hassan, M.U.; Elsherif, M.; Alqattan, B.; Park, S.; Yetisen, A.K.; Butt, H. Healthcare applications of pH-Sensitive hydrogel-based devices: A review. Int. J. Nanomed. 2020, 15, 3887. [Google Scholar] [CrossRef] [PubMed]
- Elsherif, M.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 2018, 12, 5452–5462. [Google Scholar] [CrossRef]
- Elsherif, M.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Hydrogel optical fibers for continuous glucose monitoring. Biosens. Bioelectron. 2019, 137, 25–32. [Google Scholar] [CrossRef]
- Elsherif, M.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Glucose sensing with phenylboronic acid functionalized hydrogel-based optical diffusers. ACS Nano 2018, 12, 2283–2291. [Google Scholar] [CrossRef]
- Elsherif, M.; Alam, F.; Salih, A.E.; AlQattan, B.; Yetisen, A.K.; Butt, H. Wearable Bifocal Contact Lens for Continual Glucose Monitoring Integrated with Smartphone Readers. Small 2021, 2102876. [Google Scholar] [CrossRef]
- Pathak, A.K.; Singh, V.K. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel. Opt. Fiber Technol. 2017, 39, 43–48. [Google Scholar] [CrossRef]
- Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K.-F.; Adler, H.-J.P. Review on hydrogel-based pH sensors and microsensors. Sensors 2008, 8, 561–581. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Eckert, F.; Boyko, V.; Pich, A. Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 2007, 3, 650–657. [Google Scholar] [CrossRef]
- Kuckling, D.; Richter, A.; Arndt, K.F. Temperature and pH-dependent swelling behavior of poly (N-isopropylacrylamide) copolymer hydrogels and their use in flow control. Macromol. Mater. Eng. 2003, 288, 144–151. [Google Scholar] [CrossRef]
- Zhao, Y.; Lei, M.; Liu, S.-X.; Zhao, Q. Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sens. Actuators B: Chem. 2018, 261, 226–232. [Google Scholar] [CrossRef]
- Jiang, N.; Ahmed, R.; Rifat, A.A.; Guo, J.; Yin, Y.; Montelongo, Y.; Butt, H.; Yetisen, A.K. Functionalized flexible soft polymer optical fibers for laser photomedicine. Adv. Opt. Mater. 2018, 6, 1701118. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, B.D. Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing high index layer and smart hydrogel. Sens. Actuators B Chem. 2012, 173, 268–273. [Google Scholar] [CrossRef]
- Tamayol, A.; Akbari, M.; Zilberman, Y.; Comotto, M.; Lesha, E.; Serex, L.; Bagherifard, S.; Chen, Y.; Fu, G.; Ameri, S.K. Flexible pH-sensing hydrogel fibers for epidermal applications. Adv. Healthc. Mater. 2016, 5, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.S.; Ahmad, I.; Lazim, M. pH sensitive hydrogel based on poly (acrylic acid) and cellulose nanocrystals. Sains Malays. 2015, 44, 779–785. [Google Scholar] [CrossRef]
- Arunbabu, D.; Shahsavan, H.; Zhang, W.; Zhao, B. Poly (AAc-co-MBA) hydrogel films: Adhesive and mechanical properties in aqueous medium. J. Phys. Chem. B 2013, 117, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Chang, A. pH-sensitive starch-g-poly (acrylic acid)/sodium alginate hydrogels for controlled release of diclofenac sodium. Iran. Polym. J. 2015, 24, 161–169. [Google Scholar] [CrossRef]
- Qi, X.; Wei, W.; Li, J.; Zuo, G.; Pan, X.; Su, T.; Zhang, J.; Dong, W. Salecan-based pH-sensitive hydrogels for insulin delivery. Mol. Pharm. 2017, 14, 431–440. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Bae, Y.H.; Kim, S.W. pH/temperature-sensitive polymers for macromolecular drug loading and release. In Advances in Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 1994; pp. 143–152. [Google Scholar]
- Kikuchi, A.; Okano, T. Hydrogels: Stimuli-sensitive hydrogels. In Polymeric Drug Delivery Systems; CRC Press: Boca Raton, FL, USA, 2005; pp. 275–322. [Google Scholar]
- Cheng, X.; Bonefacino, J.; Guan, B.O.; Tam, H. All-polymer fiber-optic pH sensor. Opt. Express 2018, 26, 14610–14616. [Google Scholar] [CrossRef] [Green Version]
- Janting, J.; Pedersen, J.K.; Woyessa, G.; Nielsen, K.; Bang, O. Small and robust all-polymer fiber Bragg grating based pH sensor. J. Lightwave Technol. 2019, 37, 4480–4486. [Google Scholar] [CrossRef] [Green Version]
- Yatim, K.M.; Krishnan, G.; Bakhtiar, H.; Daud, S.; Harun, S.W. The pH sensor based optical fiber coated with PAH/PAA. In Journal of Physics: Conference Series; IOP Publishing: Terengganu, Malaysia, 2019. [Google Scholar]
- Al Noman, A.; Dash, J.N.; Cheng, X.; Leong, C.Y.; Tam, H.-Y.; Yu, C. Hydrogel based Fabry-Pérot cavity for a pH sensor. Optics Express 2020, 28, 39640–39648. [Google Scholar] [CrossRef]
- Borecki, M.; Szmidt, M.; Pawłowski, M.K.; Bebłowska, M.; Niemiec, T.; Wrzosek, P. A method of testing the quality of milk using optical capillaries. Photonics Lett. Pol. 2009, 1, 37–39. [Google Scholar]
- Netto, E.J.; Peterson, J.I.; McShane, M.; Hampshire, V. A fiber-optic broad-range pH sensor system for gastric measurements. Sens. Actuators B Chem. 1995, 29, 157–163. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Butt, H.; Da Cruz Vasconcellos, F.; Montelongo, Y.; Davidson, C.A.; Blyth, J.; Chan, L.; Carmody, J.B.; Vignolini, S.; Steiner, U. Light-directed writing of chemically tunable narrow-band holographic sensors. Adv. Opt. Mater. 2014, 2, 250–254. [Google Scholar] [CrossRef]
pH-Responsive Hydrogel | pH Range | Sensitivity | Ref. |
---|---|---|---|
Poly(hydroxyethyl methacrylate)/methacrylic acid (pHEMA/MAA) | 4–7 | 0.07 nm/pH | [34] |
Poly(acrylic acid)/poly (allylamine hydrochloride) | 3–7 | 0.45 a.u/pH | [35] |
Poly(ethylene glycol diacrylate) | 2–6.5 | –0.41 nm/pH | [33] |
Poly(hydroxyethyl methacrylate)/methacrylic acid | 1–7 | 0.30 nm/pH | [36] |
pHEMA/poly(acrylic acid) | 4.5–7 | 6.5%/pH or 36 µW/pH | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqurashi, Y.; Elsherif, M.; Hendi, A.; Essa, K.; Butt, H. Optical Hydrogel Detector for pH Measurements. Biosensors 2022, 12, 40. https://doi.org/10.3390/bios12010040
Alqurashi Y, Elsherif M, Hendi A, Essa K, Butt H. Optical Hydrogel Detector for pH Measurements. Biosensors. 2022; 12(1):40. https://doi.org/10.3390/bios12010040
Chicago/Turabian StyleAlqurashi, Yousef, Mohamed Elsherif, Asail Hendi, Khamis Essa, and Haider Butt. 2022. "Optical Hydrogel Detector for pH Measurements" Biosensors 12, no. 1: 40. https://doi.org/10.3390/bios12010040
APA StyleAlqurashi, Y., Elsherif, M., Hendi, A., Essa, K., & Butt, H. (2022). Optical Hydrogel Detector for pH Measurements. Biosensors, 12(1), 40. https://doi.org/10.3390/bios12010040