Butyl Benzyl Phthalate in Urban Sewage by Magnetic-Based Immunoassay: Environmental Levels and Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Preparation of Probes
2.3. Development and Evaluation of MBI
2.4. Sample Collection, Pretreatment and Detection
2.5. Risk Assessment of BBP Contamination
3. Results and Discussion
3.1. Sensitivity of MBI
3.2. Evaluation of MBI
3.3. Environmental Levels of BBP
3.4. Comparison of BBP Contamination with Other Regions
3.5. Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, H.; Nam, K.S.; Oh, S.; Son, S.; Shin, I. Toxicological assessment of phthalates and their alternatives using human keratinocytes. Environ. Res. 2019, 175, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Mao, C.M.; Du, D.L. Time-resolved immunoassay based on magnetic particles for the detection of diethyl phthalate in environmental water samples. Sci. Total Environ. 2017, 601, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Sicińska, P. Di-n-butyl phthalate, butylbenzyl phthalate, and their metabolites exhibit different apoptotic potential in human peripheral blood mononuclear cells. Food Chem. Toxicol. 2019, 133, 110750. [Google Scholar] [CrossRef]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing andstrategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Lee, J.E.; Choe, W.; Kim, T.; Lee, J.Y.; Kho, Y.; Choi, K.; Zoh, K.D. Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environ. Int. 2019, 126, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.H.; Wang, F.L.; Yang, X.X.; Shi, M.G.; Xu, G. Concentration levels and distribution features of PAEs in water environment in Shanghai. J. Shanghai Univ. (Nat. Sci.) 2016, 22, 105–113. [Google Scholar]
- Selvaraj, K.K.; Sundaramoorthy, G.; Ravichandran, P.K.; Girijan, G.K.; Sampath, S.; Ramaswamy, B.R. Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations. Environ. Geochem. Health 2015, 37, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Solís, M.E.; Liu, C.C.; Nam, P.; Niyogi, D.K.; Bandeff, J.M.; Huang, Y.W. Occurrence of organic chemicals in two rivers inhabited by Ozark Hellbenders (Cryptobranchus alleganiensis bishopi). Arch. Environ. Contam. Toxicol. 2007, 53, 426–434. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhou, A.G.; Liu, C.F.; Chen, X.M.; Tong, X.X. Phthalic acid esters in Wuhan section of Yangtze River. Environ. Sci. Technol. 2011, 34, 130–134. [Google Scholar]
- Heitmuller, P.T.; Hollister, T.A.; Parrish, P.R. Acutetoxicity of 54 industrial chemicals to sheepshead minnows (Cyprinodon variegatus). Bull. Environ. Contam.Toxicol. 1981, 27, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Staples, C.A.; Adams, W.J.; Parkerton, T.F.; Gorsuch, J.W.; Biddinger, G.R.; Reinert, K.H. Aquatic toxicity of eighteen phthalate esters. Environ. Toxicol. Chem. 1997, 16, 875–891. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, L.; Peng, L. Determination of phthalate esters in soil samples by microwave assisted extraction and high performance liquid chromatography. Bull. Environ. Contam. Toxicol. 2010, 85, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, Q.; Zang, X. Extraction of phthalate esters in environmental water samples using layered-carbon magnetic hybrid material as adsorbent followed by their determination with HPLC. Bull. Korean. Chem. Soc. 2012, 33, 3311–3316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.M.; Wen, S.S. Determination of 17 phthalates plasticizers in food by gas chromatography-mass spectrometry. Chem. Anal. 2020, 56, 9. [Google Scholar]
- Shao, Q.R.; Liu, B.; Shi, J.E. Determination of 23 kinds of phthalate ester residues in liquor by UPLC-MS. Liquor-Mak. Sci. Technol. 2014, 2014, 100–103. [Google Scholar]
- Li, M.; Cui, Y.; Liu, Z.J.; Xue, Y.L.; Zhao, R.J.; Li, Y.; Du, D.L. Sensitive and selective determination of butyl benzyl phthalate from environmental samples using an enzyme immunoassay. Sci. Total Environ. 2019, 687, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Yanaihara, N.; Kato, I.; Nagasawa, S. Immunoassay for Phthalic Acid Esters. U.S. Patent 6,399,318, 4 June 2002. [Google Scholar]
- Zhang, M.C.; Liu, B.; Cong, Y.; Liu, S.H.; Hu, Y.R. Development of highly specific fluorescence immunoassay and enzyme-linked immunosorbent assay for detection of dimethyl phthalate in water samples. Food Agric. Immunol. 2011, 20, 297–309. [Google Scholar] [CrossRef]
- Zhang, M.C.; Yu, X.N.; Wang, Y.; Hu, Y.R.; Liu, S.H. A highly sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) by antigen coating for diethyl phthalate analysis in foods. Food Anal. Methods 2013, 6, 1223–1228. [Google Scholar] [CrossRef]
- Sun, R.; Zhuang, H. A sensitive heterogeneous biotin-streptavidin enzyme-linked immunosorbent assay for the determination of di-(2-ethylhexyl) phthalate (DEHP) in beverages using a specific polyclonal antibody. Anal. Methods 2014, 24, 9807–9815. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Chen, Y.F. Detection of dibutyl phthalate in food samples by fluorescence ratio immunosensor based on dual-emission carbon quantum dot labelled aptamers. Food Agric. Immunol. 2020, 31, 796–809. [Google Scholar] [CrossRef]
- Sun, R.; Zhuang, H. An ultrasensitive gold nanoparticles improved real-time immuno-PCR assay for detecting diethyl phthalate in foodstuff samples. Anal. Biochem. 2015, 480, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Yan, X.; Li, H. Enhanced electrochemical sensitivity towards plasticizer determination based on ferrocene-end-cap dendrimer functionalized graphene oxide electrochemical sensor. Sens. Actuators B-Chem. 2019, 288, 476–485. [Google Scholar] [CrossRef]
- Liang, Y.R.; Zhang, Z.M.; Liu, Z.J.; Wang, K.; Wu, X.Y.; Zeng, K.; Meng, H.; Zhang, Z. A highly sensitive signal-amplified gold nanoparticle-based electrochemical immunosensor for dibutyl phthalate detection. Biosens. Bioelectron. 2017, 91, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.M.; Li, X.M.; Yang, Z.; Eremin, S.A.; Zhang, X.Y. Evaluation and optimization of three different immunoassays for rapid detection zearalenone in fodders. Food Anal. Methods 2017, 10, 256–262. [Google Scholar] [CrossRef]
- Hendrickson, O.D.; Chertovich, J.O.; Zherdev, A.V.; Sveshnikov, P.G.; Zantiev, B.B. Ultrasensitive magnetic ELISA of zearalenone with pre-concentration and chemiluminescent detection. Food Control. 2018, 84, 330–338. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.Y.; Xue, Y.L.; Hong, X.; Cui, Y.; Liu, Z.J.; Du, D.L. Simultaneous determination of β2-agonists clenbuterol and salbutamol in water and swine feed samples by dual-labeled time-resolved fluoroimmunoassay. Food Control. 2017, 73, 1039–1044. [Google Scholar] [CrossRef]
- He, S.; Huang, Q.T.; Zhang, Y.; Zhang, H.F.; Xu, H.F.; Li, X.; Ma, X.M. Magnetic beads-based multicolor colorimetric immunoassay for ultrasensitive detection of aflatoxin B1. Chin. Chem. Lett. 2020, 32, 1462–1465. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.H.; Pan, W.X.; Chen, Q.S.; Ouyang, Q.; Zhao, J.W. Dual-color upconversion nanoparticles (UCNPs)-based fluorescent immunoassay probes for sensitive sensing foodborne pathogens. Food. Anal. Methods 2017, 10, 2036–2045. [Google Scholar] [CrossRef]
- Sun, J.D.; Li, M.; Xing, F.G.; Wang, H.M.; Zhang, Y.Z.; Sun, X.L. Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk. Food Chem. 2021, 375, 131682. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.Y.; Zhao, R.J.; Liu, Z.J.; Hong, X.; Cui, Y.; Xue, Y.L.; Du, D.L. Immunomagnetic bead-based biotin-streptavidin system for highly efficient detection of aflatoxin B1 in agricultural products. RSC Adv. 2018, 8, 26029–26035. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, N.; Narang, J.; Jain, U. Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). J. Exp. Nanosci. 2015, 11, 1–12. [Google Scholar] [CrossRef]
- Ren, K.W.; Wu, J.; Yan, F.; Zhang, Y.; Ju, H.X. Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens. Bioelectron. 2015, 66, 345–349. [Google Scholar] [CrossRef]
- Yılmaz, P.K.; Ertaş, A.; Kolak, U. Simultaneous determination of seven phthalic acid esters in beverages using ultrasound and vortex-assisted dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.P.; Tao, G.C.; Li, Y.; Luo, X.Q.; Feng, J.; Peng, G. Establishment of detecting the residues of dibutyl phthalate (plasticizing agent) by enzyme-linked immunosorbent assay. Food Ind. 2013, 34, 194–196. [Google Scholar]
- Wang, X.Y.; Lin, X.T.; Ke, H.M.; Ren, H.R.; Zhao, J.Q. Study on phthalic acid esters of environmental pollution in the family in Beijing area. J. Environ. Health 2007, 24, 820–821. [Google Scholar]
- Chen, M.; Ren, R.; Wang, Z.J.; Lin, X.T.; Liu, L.L. Residues of phthalate esters in water from the industrial and urban sewage. Environ. Monit. CHN 2007, 23, 4–7. [Google Scholar]
- Shen, Y.Y.; Xu, Q.; Yin, X.Y.; Wang, M.; Zhang, N.P.; Wu, S.Y.; Zhang, Z.; Gu, Z.Z.; Wang, H.F. Determination and distribution features of phthalate esters in Xuanwu lake. J. Southeast. Univ. 2010, 40, 1333–1341. [Google Scholar]
- Han, W.H.; Zhao, Y.; Dang, J.H.; Xiong, L. Distribution and ecological risk evaluation of phthalate esters in Fenhe river basin. Environ. Chem. 2017, 36, 1377–1387. [Google Scholar]
- Tiwari, M.; Sahu, S.K.; Pandit, G.G. Environmental distribution and ecotoxicological concerns of phthalic acid esters in creek ecosystem. J. Environ. Sci. Health 2019, 54, 328–336. [Google Scholar] [CrossRef]
- Mackintosh, C.E.; Maldonado, J.A.; Ikonomou, M.G.; Gobas, F.A.P.C. Sorption of phthalate esters and PCBs in a marine ecosystem. Environ. Sci. Technol. 2006, 40, 3481–3488. [Google Scholar] [CrossRef]
Number | Equation | ||
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
Parameter | Value | Parameter | Value |
MEG for health (μg/L) | 60 | MEG for ecology (μg/L) | 12 |
Reference dose (RfD, mg/kg/day) | 0.2 | Average exposure time(AT, day) | 10,950 |
Daily drinking water (U, L) | 2 | Body surface area (A sd, cm2) | 16,600 |
Exposure frequency (EF, day/a) | 365 | Bath frequency (FE, time/day) | 0.3 |
Exposure delay (ED, a) | 30 | Bath time (TE, h) | 0.4 |
Body weight (BWmen, kg) | 66.2 | Skin adsorption (k, cm/h) | 0.001 |
Body weight (BWwomen, kg) | 57.3 | Delay time (τ, h) | 1 |
Adsorption ratio (AR) | 1 | Adsorption dose (I, mg/cm−2/time) | Equation (6) |
Risk | Grade | Risk | Grade |
AS < 1 | Negligible risk | RQ < 1 | Negligible risk |
AS > 1 | Potential risk | 1.0 ≤ RQ < 10 | Potential risk |
HI < 1 | Negligible risk | 10 ≤ RQ < 100 | Low risk |
HI > 1 | Potential risk | RQ > 100 | Seriously risk |
Immunoassay | LOD (ng/mL) | Testing Range (ng/mL) | Testing Time (min) | Testing Steps | References |
---|---|---|---|---|---|
ELISA | 2.5 | 2.5–1854.1 | 135 | 5 | [16] |
MBI | 0.57 | 0.57–24977.71 | 40 | 3 | This study |
Sample | Concentration ± SD (ng/mL) | Sample | Concentration ± SD (ng/mL) |
---|---|---|---|
S1 | 12.36 ± 1.43 | S19 | 16.99 ± 1.08 |
S2 | ND | S20 | 16.97 ± 0.97 |
S3 | 18.96 ± 1.11 | S21 | ND |
S4 | 21.33 ± 1.02 | S22 | 6.62 ± 0.71 |
S5 | 28.96 ± 1.89 | S23 | 71.02 ± 1.02 |
S6 | 39.64 ± 1.12 | S24 | 86.12 ± 0.99 |
S7 | 11.02 ± 0.98 | S25 | 16.25 ± 1.21 |
S8 | 12.06 ± 1.17 | S26 | ND |
S9 | ND | S27 | 3.96 ± 0.10 |
S10 | 22.75 ± 1.69 | S28 | 17.55 ± 1.41 |
S11 | 25.22 ± 1.63 | S29 | 19.67 ± 1.57 |
S12 | 84.11 ± 1.89 | S30 | ND |
S13 | 89.21 ± 1.48 | S31 | 28.01 ± 0.97 |
S14 | 5.13 ± 0.28 | S32 | 13.21 ± 1.16 |
S15 | ND | S33 | 14.03 ± 2.13 |
S16 | ND | S34 | ND |
S17 | 57.06 ± 1.43 | S35 | 2.47 ± 0.19 |
S18 | 47.12 ± 1.15 | S36 | 2.69 ± 0.13 |
Average | 21.96 |
Sampling Region | Sample | Range (ng/mL) | Ref. |
---|---|---|---|
Beijing, China | Plastic container | 0.63–22.47 | [36] |
Wuhan, China | Yangtze River | 1.14–1.23 | [9] |
Shanghai, China | Huangpu River | 9.411–86.395 | [6] |
Beijing, China | Industrial and urban sewage | ND–62.5 | [37] |
Nanjing, China | Xuanwu lake | 26.71–176.6 | [38] |
Shanxi, China | Fenhe River basin | ND–18.68 | [39] |
Karnataka, India | Kaveri River | ND–7.8 | [7] |
Mumbai, India | Trance Thane creek | 2.5–20.5 | [40] |
Vancouver, Canada | False creek harbor | 1.25–5.65 | [41] |
Ozark, USA | Eleven Point River and White River | ND–0.14 | [8] |
Zhenjiang, China | Urban sewage | ND–89.21 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, X.; Cui, Y.; Li, M.; Xia, Y.; Du, D.; Yi, C. Butyl Benzyl Phthalate in Urban Sewage by Magnetic-Based Immunoassay: Environmental Levels and Risk Assessment. Biosensors 2022, 12, 45. https://doi.org/10.3390/bios12010045
Hong X, Cui Y, Li M, Xia Y, Du D, Yi C. Butyl Benzyl Phthalate in Urban Sewage by Magnetic-Based Immunoassay: Environmental Levels and Risk Assessment. Biosensors. 2022; 12(1):45. https://doi.org/10.3390/bios12010045
Chicago/Turabian StyleHong, Xia, Yin Cui, Ming Li, Yifan Xia, Daolin Du, and Chengwu Yi. 2022. "Butyl Benzyl Phthalate in Urban Sewage by Magnetic-Based Immunoassay: Environmental Levels and Risk Assessment" Biosensors 12, no. 1: 45. https://doi.org/10.3390/bios12010045
APA StyleHong, X., Cui, Y., Li, M., Xia, Y., Du, D., & Yi, C. (2022). Butyl Benzyl Phthalate in Urban Sewage by Magnetic-Based Immunoassay: Environmental Levels and Risk Assessment. Biosensors, 12(1), 45. https://doi.org/10.3390/bios12010045