Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection
Abstract
:1. Introduction
2. Fluorescence Intensity Signals
2.1. Binding Activity—Cas9, dCas9
2.2. Cleavage Activity—Cas12, Cas 13, Cas14
3. Fluorescent Digital Signals
4. Fluorescent Nanomaterials Assisted Signals
4.1. Quantum Dot
4.2. Photonic Crystal Barcodes
4.3. Metal Nanoparticles
5. Portable Fluorescent Signal Readout
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Mohanraju, P.; Makarova, K.S.; Zetsche, B.; Zhang, F.; Koonin, E.V.; Van der Oost, J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 2016, 353, aad5147. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Wang, J.; Liu, G. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol. 2019, 37, 730–743. [Google Scholar] [CrossRef]
- Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O.O.; Gootenberg, J.S.; Makarova, K.S.; Wolf, Y.I. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 2017, 15, 169–182. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S. Origins and evolution of CRISPR-Cas systems. Proc. R. Soc. B 2019, 374, 20180087. [Google Scholar] [CrossRef]
- Knott, G.J.; Doudna, J.A. CRISPR-Cas guides the future of genetic engineering. Science 2018, 361, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef]
- Harrington, L.B.; Burstein, D.; Chen, J.S.; Paez-Espino, D.; Ma, E.; Witte, I.P.; Cofsky, J.C.; Kyrpides, N.C.; Banfield, J.F.; Doudna, J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018, 362, 839–842. [Google Scholar] [CrossRef] [Green Version]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef] [PubMed]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; Van Der Oost, J.; Regev, A. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Cheng, Q.-X.; Liu, J.-K.; Nie, X.-Q.; Zhao, G.-P.; Wang, J. CRISPR-Cas12a has both cis-and trans-cleavage activities on single-stranded DNA. Cell Res. 2018, 28, 491–493. [Google Scholar] [CrossRef]
- Zhang, K.; Deng, R.; Li, Y.; Zhang, L.; Li, J. Cas9 cleavage assay for pre-screening of sgRNAs using nicking triggered isothermal amplification. Chem. Sci. 2016, 7, 4951–4957. [Google Scholar] [CrossRef]
- Chen, J.S.; Doudna, J.A. The chemistry of Cas9 and its CRISPR colleagues. Nat. Rev. Chem. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Strohkendl, I.; Saifuddin, F.A.; Rybarski, J.R.; Finkelstein, I.J.; Russell, R. Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol. Cell 2018, 71, 816–824.e3. [Google Scholar] [CrossRef]
- O’Connell, M.R.; Oakes, B.L.; Sternberg, S.H.; East-Seletsky, A.; Kaplan, M.; Doudna, J.A. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014, 516, 263–266. [Google Scholar] [CrossRef]
- Sternberg, S.H.; Redding, S.; Jinek, M.; Greene, E.C.; Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014, 507, 62–67. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Sun, H.H.; Yin, B.C.; Ye, B.C. An RNA-guided Cas9 nickase-based method for universal isothermal DNA amplification. Angew. Chem. Int. Ed. 2019, 131, 5436–5440. [Google Scholar] [CrossRef]
- Fonfara, I.; Richter, H.; Bratovič, M.; Le Rhun, A.; Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016, 532, 517–521. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [PubMed]
- East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, X.; Zhang, M.; Wang, X.; Chen, Y.; Qian, C.; Wu, J.; Xu, J. Versatile detection with CRISPR/Cas system from applications to challenges. TrAC Trends Anal. Chem. 2021, 135, 116150. [Google Scholar] [CrossRef]
- Wang, S.Y.; Du, Y.C.; Wang, D.X.; Ma, J.Y.; Tang, A.N.; Kong, D.M. Signal amplification and output of CRISPR/Cas-based biosensing systems: A review. Anal. Chim. Acta 2021, 1185. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-based diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef]
- Granados-Riveron, J.T.; Aquino-Jarquin, G. CRISPR–Cas13 precision transcriptome engineering in cancer. Cancer Res. 2018, 78, 4107–4113. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yang, Z.; Zong, C.; Wang, B.; Ge, X.; Tan, X.; Liu, X.; Tao, Z.; Wang, P.; Ma, C.; et al. Trans Single-Stranded DNA Cleavage via CRISPR/Cas14a1 Activated by Target RNA without Destruction. Angew. Chem. Int. Ed. 2021, 60, 24241–24247. [Google Scholar] [CrossRef]
- Joung, J.; Ladha, A.; Saito, M.; Kim, N.-G.; Woolley, A.E.; Segel, M.; Barretto, R.P.; Ranu, A.; Macrae, R.K.; Faure, G. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N. Engl. J. Med. 2020, 383, 1492–1494. [Google Scholar] [CrossRef]
- Choi, J.-H.; Lim, J.; Shin, M.; Paek, S.-H.; Choi, J.-W. CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett. 2020, 21, 693–699. [Google Scholar] [CrossRef]
- Li, S.Y.; Cheng, Q.X.; Wang, J.M.; Li, X.Y.; Zhang, Z.L.; Gao, S.; Cao, R.B.; Zhao, G.P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef]
- Diaz-Galicia, E.; Grunberg, R.; Arold, S.T. How to Find the Right RNA-Sensing CRISPR-Cas System for an In Vitro Application. Biosensors 2022, 12, 53. [Google Scholar] [CrossRef]
- Portable CRISPR-based diagnostics. Nat. Biotechnol. 2019, 37, 832. [CrossRef]
- Huang, M.; Zhou, X.; Wang, H.; Xing, D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal. Chem. 2018, 90, 2193–2200. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Zhang, L.; Liu, S.; Zhang, M.; Wang, J.; Ning, B.; Peng, Y.; He, J.; Hu, Y.; et al. CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157:H7 Detection Based on a Metal-Organic Framework Platform. Anal. Chem. 2020, 92, 3032–3041. [Google Scholar] [CrossRef]
- Wang, M.; Han, D.; Zhang, J.; Zhang, R.; Li, J. High-fidelity detection of DNA combining the CRISPR/Cas9 system and hairpin probe. Biosens. Bioelectron. 2021, 184, 113212. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, L.; Ying, L.; Zhao, Z.; Chu, P.K.; Yu, X.-F. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun. 2018, 9, 5012. [Google Scholar] [CrossRef]
- Jiao, C.; Sharma, S.; Dugar, G.; Peeck, N.L.; Bischler, T.; Wimmer, F.; Yu, Y.; Barquist, L.; Schoen, C.; Kurzai, O. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science 2021, 372, 941–948. [Google Scholar] [CrossRef]
- Azhar, M.; Phutela, R.; Kumar, M.; Ansari, A.H.; Rauthan, R.; Gulati, S.; Sharma, N.; Sinha, D.; Sharma, S.; Singh, S.; et al. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosens. Bioelectron. 2021, 183, 113207. [Google Scholar] [CrossRef]
- Xu, X.; Luo, T.; Gao, J.; Lin, N.; Li, W.; Xia, X.; Wang, J. CRISPR-Assisted DNA Detection: A Novel dCas9-Based DNA Detection Technique. CRISPR J. 2020, 3, 487–502. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, L.; Wei, X.; Wang, Y.; Shang, L.; Sun, L.; Zhao, Y. Multiplexed CRISPR/Cas9 quantifications based on bioinspired photonic barcodes. Nano Today 2021, 40, 101268. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Ding, X.; Yin, K.; Li, Z.; Lalla, R.V.; Ballesteros, E.; Sfeir, M.M.; Liu, C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 2020, 11, 4711. [Google Scholar] [CrossRef]
- Park, J.S.; Hsieh, K.; Chen, L.; Kaushik, A.; Trick, A.Y.; Wang, T.H. Digital CRISPR/Cas-Assisted Assay for Rapid and Sensitive Detection of SARS-CoV-2. Adv. Sci. 2021, 8, 2003564. [Google Scholar] [CrossRef]
- Ning, B.; Yu, T.; Zhang, S.; Huang, Z.; Tian, D.; Lin, Z.; Niu, A.; Golden, N.; Hensley, K.; Threeton, B. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci. Adv. 2021, 7, eabe3703. [Google Scholar] [CrossRef]
- Wu, X.; Tay, J.K.; Goh, C.K.; Chan, C.; Lee, Y.H.; Springs, S.L.; Wang, Y.; Loh, K.S.; Lu, T.K.; Yu, H. Digital CRISPR-based method for the rapid detection and absolute quantification of nucleic acids. Biomaterials 2021, 274, 120876. [Google Scholar] [CrossRef]
- Ding, X.; Yin, K.; Li, Z.; Sfeir, M.M.; Liu, C. Sensitive quantitative detection of SARS-CoV-2 in clinical samples using digital warm-start CRISPR assay. Biosens. Bioelectron. 2021, 184, 113218. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Wu, N.; Wu, J.; Wang, G.; Zhao, G.; Wang, J. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation. ACS Synth. Biol. 2019, 8, 2228–2237. [Google Scholar] [CrossRef]
- Guo, L.; Sun, X.; Wang, X.; Liang, C.; Jiang, H.; Gao, Q.; Dai, M.; Qu, B.; Fang, S.; Mao, Y.; et al. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 2020, 6, 34. [Google Scholar] [CrossRef]
- Liu, T.Y.; Knott, G.J.; Smock, D.C.J.; Desmarais, J.J.; Son, S.; Bhuiya, A.; Jakhanwal, S.; Prywes, N.; Agrawal, S.; Diaz de Leon Derby, M.; et al. Accelerated RNA detection using tandem CRISPR nucleases. Nat. Chem. Biol. 2021, 17, 982–988. [Google Scholar] [CrossRef]
- Shinoda, H.; Taguchi, Y.; Nakagawa, R.; Makino, A.; Okazaki, S.; Nakano, M.; Muramoto, Y.; Takahashi, C.; Takahashi, I.; Ando, J.; et al. Amplification-free RNA detection with CRISPR-Cas13. Commun. Biol. 2021, 4, 476. [Google Scholar] [CrossRef]
- Chen, Q.; Tian, T.; Xiong, E.; Wang, P.; Zhou, X. CRISPR/Cas13a Signal Amplification Linked Immunosorbent Assay for Femtomolar Protein Detection. Anal. Chem. 2020, 92, 573–577. [Google Scholar] [CrossRef]
- Ackerman, C.M.; Myhrvold, C.; Thakku, S.G.; Freije, C.A.; Metsky, H.C.; Yang, D.K.; Ye, S.H.; Boehm, C.K.; Kosoko-Thoroddsen, T.F.; Kehe, J.; et al. Massively multiplexed nucleic acid detection with Cas13. Nature 2020, 582, 277–282. [Google Scholar] [CrossRef]
- Arizti-Sanz, J.; Freije, C.A.; Stanton, A.C.; Petros, B.A.; Boehm, C.K.; Siddiqui, S.; Shaw, B.M.; Adams, G.; Kosoko-Thoroddsen, T.F.; Kemball, M.E.; et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 2020, 11, 5921. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef]
- Richter, F.; Fonfara, I.; Gelfert, R.; Nack, J.; Charpentier, E.; Moeglich, A. Switchable Cas9. Curr. Opin. Biotechnol. 2017, 48, 119–126. [Google Scholar] [CrossRef]
- Nihongaki, Y.; Yamamoto, S.; Kawano, F.; Suzuki, H.; Sato, M. CRISPR-Cas9-based Photoactivatable Transcription System. Chem. Biol. 2015, 22, 169–174. [Google Scholar] [CrossRef]
- Lin, B.; An, Y.; Meng, L.; Zhang, H.; Song, J.; Zhu, Z.; Liu, W.; Song, Y.; Yang, C. Control of CRISPR-Cas9 with small molecule-activated allosteric aptamer regulating sgRNAs. Chem. Commun. 2019, 55, 12223–12226. [Google Scholar] [CrossRef] [PubMed]
- Ha, T. Single-molecule fluorescence resonance energy transfer. Methods 2001, 25, 78–86. [Google Scholar] [CrossRef]
- Clegg, R.M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 1995, 6, 103–110. [Google Scholar] [CrossRef]
- Sahoo, H. Forster resonance energy transfer—A spectroscopic nanoruler: Principle and applications. J. Photochem. Photobiol. C-Photochem. Rev. 2011, 12, 20–30. [Google Scholar] [CrossRef]
- Mao, S.; Ying, Y.; Wu, X.; Krueger, C.J.; Chen, A.K. CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Res. 2019, 47, e131. [Google Scholar] [CrossRef] [PubMed]
- Kunzelmann, S.; Solscheid, C.; Webb, M.R. Fluorescent biosensors: Design and application to motor proteins. Exp. Suppl. 2012 2014, 105, 25–47. [Google Scholar] [CrossRef]
- Bunt, G.; Wouters, F.S. FRET from single to multiplexed signaling events. Biophys. Rev. 2017, 9, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xie, T.; Pei, X.; Li, S.; He, Y.; Tong, Y.; Liu, G. Systematically investigating the fluorescent signal readout of CRISPR-Cas12a for highly sensitive SARS-CoV-2 detection. Sens. Actuators B Chem. 2022; 373, 132746. [Google Scholar] [CrossRef]
- Smith, C.W.; Nandu, N.; Kachwala, M.J.; Chen, Y.-S.; Uyar, T.B.; Yigit, M.V. Probing CRISPR-Cas12a Nuclease Activity Using Double-Stranded DNA-Templated Fluorescent Substrates. Biochemistry 2020, 59, 1474–1481. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.; Liu, B.-F.; Hu, R.; Zhu, J.; He, T.; Zhou, X.; Li, C.; Yang, Y.; Liu, M. CRISPR-Cas12a trans-cleaves DNA G-quadruplexes. Chem. Commun. 2020, 56, 12526–12529. [Google Scholar] [CrossRef]
- Li, T.; Hu, R.; Xia, J.; Xu, Z.; Chen, D.; Xi, J.; Liu, B.-F.; Zhu, J.; Li, Y.; Yang, Y.; et al. G-triplex: A new type of CRISPR-Cas12a reporter enabling highly sensitive nucleic acid detection. Biosens. Bioelectron. 2021, 187, 113292. [Google Scholar] [CrossRef]
- Zhou, T.; Huang, M.; Lin, J.; Huang, R.; Xing, D. High-fidelity CRISPR/Cas13a trans-cleavage-triggered rolling circle amplified DNAzyme for visual profiling of microRNA. Anal. Chem. 2021, 93, 2038–2044. [Google Scholar] [CrossRef]
- Aquino-Jarquin, G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomedicine 2019, 18, 428–431. [Google Scholar] [CrossRef]
- Kulesa, A.; Kehe, J.; Hurtado, J.E.; Tawde, P.; Blainey, P.C. Combinatorial drug discovery in nanoliter droplets. Proc. Natl. Acad. Sci. USA 2018, 115, 6685–6690. [Google Scholar] [CrossRef]
- Zhou, B.; Ye, Q.; Li, F.; Xiang, X.; Shang, Y.; Wang, C.; Shao, Y.; Xue, L.; Zhang, J.; Wang, J. CRISPR/Cas12a based fluorescence-enhanced lateral flow biosensor for detection of Staphylococcus aureus. Sens. Actuators B Chem. 2022, 351, 130906. [Google Scholar] [CrossRef]
- Lampel, K.A.; Orlandi, P.A.; Kornegay, L. Improved template preparation for PCR-based assays for detection of food-borne bacterial pathogens. Appl. Environ. Microb. 2000, 66, 4539–4542. [Google Scholar] [CrossRef] [PubMed]
- Blauwkamp, T.A.; Thair, S.; Rosen, M.J.; Blair, L.; Lindner, M.S.; Vilfan, I.D.; Kawli, T.; Christians, F.C.; Venkatasubrahmanyam, S.; Wall, G.D. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 2019, 4, 663–674. [Google Scholar] [CrossRef]
- Rohr, U.-P.; Binder, C.; Dieterle, T.; Giusti, F.; Messina, C.G.M.; Toerien, E.; Moch, H.; Schäfer, H.H. The value of in vitro diagnostic testing in medical practice: A status report. PLoS ONE 2016, 11, e0149856. [Google Scholar] [CrossRef] [PubMed]
- Fozouni, P.; Son, S.; de León Derby, M.D.; Knott, G.J.; Gray, C.N.; D’Ambrosio, M.V.; Zhao, C.; Switz, N.A.; Kumar, G.R.; Stephens, S. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021, 184, 323–333.e9. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yu, D.; Bao, M.; Korensky, G.; Chen, J.; Shin, M.; Kim, J.; Park, M.; Qin, P.; Du, K. High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosens. Bioelectron. 2020, 154, 112068. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Park, M.; Alfson, K.J.; Tamhankar, M.; Carrion, R.; Patterson, J.L.; Griffiths, A.; He, Q.; Yildiz, A.; Mathies, R. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sens. 2019, 4, 1048–1054. [Google Scholar] [CrossRef]
Effector | Detection Platform | Target | Amplification | Fluorescent Signal | Sensitivity | Applications | Signal Readout | References |
---|---|---|---|---|---|---|---|---|
Cas9 | DNA/RNA | CAS-EXPAR | SYBR Green I | aM(10−18 M) | SNP genotype discrimination | Real-time fluorescence | [34] | |
MOFs | DNA | SDA, RCA | FAM | 40 CFU/mL (Colony-Forming Unit/mL) | Quantitative bacteria detection | Fluorescence spectroscopy | [35] | |
CHP | DNA | SDA, RCA | FAM | aM | DNA and SNVs detection | Real-time fluorescence | [36] | |
CRISDA | DNA | SDA | Cy5 | 2.5 aM | DNA and SNVs detection | Real-time fluorescence | [37] | |
LEOPARD | DNA | qRT-PCR | TEX | aM | Virus detection | Real-time fluorescence | [38] | |
FELUDA | DNA | RT-PCR | FAM | 10 CPs/μL (copies/mL) | Virus and SNVs detection | Real-time fluorescence | [39] | |
CADD | DNA | HCR; ELISA | FAM | aM | Viral, bacterial, and cellular DNA detection | Fluorescence spectroscopy | [40] | |
PHC | DNA | HCR | FAM | 0.025 pM | Multiplex virus detection | Fluorescence spectroscopy | [41] | |
Cas12a | HOLMES | DNA/RNA | PCR; RT-PCR | HEX | aM | Virus genotyping and human SNPs detection | Fluorescence spectroscopy | [31] |
DETECTR | DNA | RPA | FAM | aM | Virus detection | Real-time fluorescence | [42] | |
AIOD-CRISPR | DNA | RT-RPA | FAM | 5 CPs/μL | Virus detection | Real-time fluorescence | [43] | |
deCOViD | DNA | RT-RPA | FAM | 1 GE/μL (genome equivalent/μL) | Virus detection | Digital fluorescence | [44] | |
CRISPR-FDS | DNA | RT-PCR; RT-RPA | FAM | 2 CPs/sample | Virus detection | Digital fluorescence | [45] | |
RADICA | DNA | RPA | FAM | 10 pM (10−12 M) | Quantitative virus detection | Digital fluorescence | [46] | |
WS-CRISPR | DNA | RT-DAMP | FAM | 5 CPs/μL | Virus detection | Digital fluorescence | [47] | |
Cas12b | HOLMESv2 | DNA/RNA | LAMP; RT-LAMP; Asymmetric PCR | HEX; FAM | aM | SNPs detection, RNA detection, DNA methylation detection | Real-time fluorescence | [48] |
STOP | DNA | RT-LAMP | HEX; FAM | 33 CPs/mL | Virus detection | Real-time fluorescence | [29] | |
CASdetec | DNA | RT-RAA | FAM | 105 CPs/mL | Virus detection | Real-time fluorescence | [49] | |
Cas13a | SHERLOCK | DNA/RNA | RPA | FAM | aM | Virus detecting, human DNA genotyping, cancer mutations | Real-time fluorescence | [21] |
Csm6 | RNA | qRT-PCR | FAM | 20 fM (10−15 M) | Virus detection | Real-time fluorescence | [50] | |
SATORI | RNA | NONE | FAM | 10 fM | Virus detection | Digital fluorescence | [51] | |
CLISA | DNA | TMA | FAM | fM | VEGF detection | Real-time fluorescence | [52] | |
CARMEN | DNA | PCR; RPA | FAM | 10 CPs/μL | Multiplex virus and SNPs detection | Real-time fluorescence | [53] | |
SHINE | DNA | RT-RPA | FAM | 10 CPs/μL | Virus detection | Real-time fluorescence | [54] | |
Cas13b | SHERLOCKv2 | DNA/RNA | RPA | FAM, TEX, Cy5, HEX | zM (10−21 M) | Multiplex detection | Real-time fluorescence | [55] |
Cas14a | DETECTR | DNA | RPA | λex: 485 nm; λem: 535 nm | aM | SNP identification | Real-time fluorescence | [10] |
Cas14a1 | ATCas-RNA | RNA | TMA | FAM | aM | Nucleic acid detection | Real-time fluorescence | [28] |
Method | Reporters | Reporters Sequences | LOD | References |
---|---|---|---|---|
DETECTR | ssDNA | 5′6-FAM-TTATT-3′BHQ1 | 105 copies/mL (with amplification) | [42] |
HOLMES | ssDNA | 5′6-HEX-NNNNNNNNNNNN-3′BHQ1 | 0.1 nM | [31] |
NA | dsDNA | 5′6-FAM-AGA ACC GAA TTT G TG TAG CTT ATC AGA CTG and CAG TCT GAT-AAG CTA CAC AAA TTC GGT TCT 3′IABkFQ | 10 pM | [66] |
NA | G4 | 5′6-FAM-T TAG GGT TAG GGT TAG GGT TAG GG-3′TAMRA | 0.02 nM | [67] |
G-CRISPR | G3 | 5′6-FAM-GGT TGG TGT GG-3′TAMRA | 50 pM and 1000 copies/mL (with amplification) | [68] |
NA | MB | 5′6-Texas Red-TGG GAT AT CTT TAA TTT TAT TTT AAC AAG ATA TCC CA-3′BHQ | 100 fM, 27 copies/mL (with amplification) | [65] |
Method | Reporters | Reporters Sequences | LOD | Reference |
---|---|---|---|---|
SHINE | RNA | 5′6-FAM-rUrUrUrUrUrUrUrUrUrUrUrUrUrU-3′Bio | 10 CPs/μL | [54] |
Cam6 | RNA | 5′6-FAM-TrCrUrArCrUrU-3′IABkFQ | fM | [50] |
Sherlock | RNA | RNAse Alert v2, Thermo Scientific | aM | [21] |
HUDSON | RNA | 5′6-FAM-UUUUUUUUUUUUUU-3′Bio | 0.9 aM (~1 cp/mL) in saliva 20 aM (10 cp/mL) in urine | [22] |
vCAS | RNA | 5′6-FAM-rUrUrUrUrU-3′BHQ1 | fM | [69] |
SATORI | RNA | 5′6-FAM-rUrUrUrUrU-3′lABkFQ | fM | [51] |
Method | Reporters | Reporters Sequences | LOD | Reference |
---|---|---|---|---|
ATCas-RNA | ssDNA | 5′6-FAM-TTTTTTTTTTTT-3′BHQ1 | aM | [28] |
RNA | 5′6-FAM-UUUUU-3′BHQ1 | |||
DETECTR | ssDNA | 5′6-FAM-TTTTT-3′IABkFQ | aM | [70] |
5′6-FAM-TTTTTT-3′IABkFQ/ | ||||
5′6-FAM-TTTTTTT-3′IABkFQ | ||||
5′6-FAM-TTTTTTTT-3′IABkFQ | ||||
5′6-FAM-TTTTTTTTT-3′IABkFQ | ||||
5′6-FAM-TTTTTTTTTT-3′IABkFQ | ||||
5′6-FAM-TTTTTTTTTTT-3′IABkFQ | ||||
5′6-FAM-TTTTTTTTTTTT-3′IABkFQ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Liu, S.; Pei, X.; Li, S.; He, Y.; Tong, Y.; Liu, G. Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection. Biosensors 2022, 12, 779. https://doi.org/10.3390/bios12100779
Huang Z, Liu S, Pei X, Li S, He Y, Tong Y, Liu G. Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection. Biosensors. 2022; 12(10):779. https://doi.org/10.3390/bios12100779
Chicago/Turabian StyleHuang, Zhaohe, Sitong Liu, Xiaojing Pei, Shujing Li, Yifan He, Yigang Tong, and Guoqi Liu. 2022. "Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection" Biosensors 12, no. 10: 779. https://doi.org/10.3390/bios12100779
APA StyleHuang, Z., Liu, S., Pei, X., Li, S., He, Y., Tong, Y., & Liu, G. (2022). Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection. Biosensors, 12(10), 779. https://doi.org/10.3390/bios12100779