An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. Electropolymerization of β-CD on the Surface of the GCE
2.4. Synthesis of AuNPs-DDT
2.5. Fabrication of the Electrochemical Immunosensor
3. Results and Discussion
3.1. Characterization of AuNPs-DDT
3.1.1. Investigation of the Morphology of the Synthesized AuNPs-DTT by FE-SEM
3.1.2. Dynamic Light Scattering Analysis
3.1.3. Characterization of the Biosensor
3.2. Electrochemical Behavior of the Engineered Immunosensor
3.3. Analytical Approach
3.4. Real Samples Analysis
3.5. Kinetic Study
3.6. Selectivity of the Immunosensor
3.7. Repeatability of the Fabricated Substrate
3.8. Reproducibility of the Immunosensor
3.9. Evaluation of the Stability
3.9.1. Inter-Day Stability
3.9.2. Intra-Day Stability
3.9.3. Cyclic Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bermudez-Silva, F.J.; Cardinal, P.; Cota, D. The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. J. Psychopharmacol. 2012, 26, 114–124. [Google Scholar] [CrossRef]
- Ferreira-Junior, N.C.; Campos, A.C.; Guimaraes, F.S.; Del-Bel, E.; Zimmermann, P.M.d.R.; Brum Junior, L.; Hallak, J.E.; Crippa, J.A.; Zuardi, A.W. Biological bases for a possible effect of cannabidiol in Parkinson’s disease. Braz. J. Psychiatry 2019, 42, 218–224. [Google Scholar] [CrossRef]
- Toguri, J.T.; Caldwell, M.; Kelly, M.E. Turning down the thermostat: Modulating the endocannabinoid system in ocular inflammation and pain. Front. Pharmacol. 2016, 7, 304. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Fanid, L.M.; Zeinalzadeh, N.; Alizadeh, M.; Vaezi, H.; Aydinlou, Z.H.; Noorazar, S.G. The first evidence of an association between a polymorphism in the endocannabinoid-degrading enzyme FAAH (FAAH rs2295633) with attention deficit hyperactivity disorder. Genomics 2020, 112, 1330–1334. [Google Scholar] [CrossRef]
- Amini, M.; Saboory, E.; Derafshpour, L.; Fakhari, A.; Wu, J.C.; Bruggeman, R.; Asgharzadeh, F.; Ahmadalipour, A. The impact of sleep deprivation on sexual behaviors and FAAH expression in the prefrontal cortex of male rats. Neurosci. Lett. 2020, 735, 135254. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Shahabi, P.; Karimi, P.; Soltani-Zangbar, H.; Morshedi, M.; Bani, S.; Jafarzadehgharehziaaddin, M.; Sadeghzadeh-Oskouei, B.; Ahmadalipour, A. Impacts of epidural electrical stimulation on Wnt signaling, FAAH, and BDNF following thoracic spinal cord injury in rat. J. Cell. Physiol. 2020, 235, 9795–9805. [Google Scholar] [CrossRef]
- Grimaldi, P.; Orlando, P.; Di Siena, S.; Lolicato, F.; Petrosino, S.; Bisogno, T.; Geremia, R.; De Petrocellis, L.; Di Marzo, V. The endocannabinoid system and pivotal role of the CB2 receptor in mouse spermatogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 11131–11136. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Atakan, Z. Cannabis, a complex plant: Different compounds and different effects on individuals. Ther. Adv. Psychopharmacol. 2012, 2, 241–254. [Google Scholar] [CrossRef]
- Mills, B.; Yepes, A.; Nugent, K. Synthetic cannabinoids. Am. J. Med. Sci. 2015, 350, 59–62. [Google Scholar] [CrossRef]
- Le Boisselier, R.; Alexandre, J.; Lelong-Boulouard, V.; Debruyne, D. Focus on cannabinoids and synthetic cannabinoids. Clin. Pharmacol. Ther. 2017, 101, 220–229. [Google Scholar] [CrossRef]
- Sepe, R.M.; Sordino, P.; De Girolamo, P. A Functional Study of the Endocannabinoid System in Zebrafish Neurodevelopment: Implications in Vision and Locomotion. Ph.D. Thesis, Università degli Studi di Napoli Federico II, Napoli, Italy, 2018. (In Italian). [Google Scholar]
- Sharma, C.; Sadek, B.; Goyal, S.N.; Sinha, S.; Kamal, M.A.; Ojha, S. Small molecules from nature targeting G-protein coupled cannabinoid receptors: Potential leads for drug discovery and development. Evid.-Based Complement. Altern. Med. 2015, 2015, 238482. [Google Scholar] [CrossRef]
- Marchioni, C.; de Souza, I.D.; Grecco, C.F.; Crippa, J.A.; Tumas, V.; Queiroz, M.E.C. A column switching ultrahigh-performance liquid chromatography-tandem mass spectrometry method to determine anandamide and 2-arachidonoylglycerol in plasma samples. Anal. Bioanal. Chem. 2017, 409, 3587–3596. [Google Scholar] [CrossRef] [PubMed]
- Bobrich, M.; Schwarz, R.; Ramer, R.; Borchert, P.; Hinz, B. A simple LC-MS/MS method for the simultaneous quantification of endocannabinoids in biological samples. J. Chromatogr. B 2020, 1161, 122371. [Google Scholar] [CrossRef]
- Feliu, A.; Mestre, L.; Carrillo-Salinas, F.J.; Yong, V.W.; Mecha, M.; Guaza, C. 2-arachidonoylglycerol reduces chondroitin sulphate proteoglycan production by astrocytes and enhances oligodendrocyte differentiation under inhibitory conditions. Glia 2020, 68, 1255–1273. [Google Scholar] [CrossRef]
- Gachet, M.S.; Rhyn, P.; Bosch, O.G.; Quednow, B.B.; Gertsch, J. A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma. J. Chromatogr. B 2015, 976, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Y.; Gao, Y.; Btesh, J.; Kagan, N.; Kerns, E.; Samad, T.A.; Chanda, P.K. Simultaneous determination of 2-arachidonoylglycerol, 1-arachidonoylglycerol and arachidonic acid in mouse brain tissue using liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 2010, 45, 167–177. [Google Scholar] [CrossRef]
- Iftikhar, T.; Aziz, A.; Ashraf, G.; Xu, Y.; Li, G.; Zhang, T.; Asif, M.; Xiao, F.; Liu, H. Engineering MOFs derived metal oxide nanohybrids: Towards electrochemical sensing of catechol in tea samples. Food Chem. 2022, 395, 133642. [Google Scholar] [CrossRef]
- Kohansal, F.; Mobed, A.; Ansari, E.; Hasanzadeh, M.; Ahmadalipour, A.; Shadjou, N. An innovative electrochemical immuno-platform towards ultra-sensitive monitoring of 2-arachidonoyl glycerol in samples from rats with sleep deprivation: Bioanalysis of endogenous cannabinoids using biosensor technology. RSC Adv. 2022, 12, 14154–14166. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.A.A.; Zaini, M.S.; Kamarudin, M.A. An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J. Pharm. Biomed. Anal. 2019, 174, 608–617. [Google Scholar]
- Doldán, X.; Fagúndez, P.; Cayota, A.; Laíz, J.; Tosar, J.P. Electrochemical sandwich immunosensor for determination of exosomes based on surface marker-mediated signal amplification. Anal. Chem. 2016, 88, 10466–10473. [Google Scholar] [CrossRef] [PubMed]
- Hirata, N.; Tanabe, K.; Narita, A.; Tanaka, K.; Naka, K.; Chujo, Y.; Nishimoto, S.-I. Preparation and fluorescence properties of fluorophore-labeled avidin–biotin system immobilized on Fe3O4 nanoparticles through functional indolequinone linker. Bioorg. Med. Chem. 2009, 17, 3775–3781. [Google Scholar] [CrossRef] [PubMed]
- Seidi, F.; Jin, Y.; Xiao, H. Polycyclodextrins: Synthesis, functionalization, and applications. Carbohydr. Polym. 2020, 242, 116277. [Google Scholar] [CrossRef] [PubMed]
- Seidi, F.; Shamsabadi, A.A.; Amini, M.; Shabanian, M.; Crespy, D. Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym. Chem. 2019, 10, 3674–3711. [Google Scholar] [CrossRef]
- Gao, J.; Ma, H.; Lv, X.; Yan, T.; Li, N.; Cao, W.; Wei, Q. A novel electrochemical immunosensor using β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase as labels for ultrasensitive detection of alpha-fetoprotein. Anal. Chim. Acta 2015, 893, 49–56. [Google Scholar] [CrossRef]
- Sangili, A.; Kalyani, T.; Chen, S.-M.; Nanda, A.; Jana, S.K. Label-free electrochemical immunosensor based on one-step electrochemical deposition of AuNP-RGO nanocomposites for detection of endometriosis marker CA 125. ACS Appl. Bio-Mater. 2020, 3, 7620–7630. [Google Scholar] [CrossRef]
- Fan, Y.; Guo, Y.; Shi, S.; Ma, J. An electrochemical immunosensor based on reduced graphene oxide/multiwalled carbon nanotubes/thionine/gold nanoparticle nanocomposites for the sensitive testing of follicle-stimulating hormone. Anal. Methods 2021, 13, 3821–3828. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015, 33, 362–369. [Google Scholar] [CrossRef]
- Abbasy, L.; Mohammadzadeh, A.; Hasanzadeh, M.; Razmi, N. Development of a reliable bioanalytical method based on prostate specific antigen trapping on the cavity of molecular imprinted polymer towards sensing of PSA using binding affinity of PSA-MIP receptor: A novel biosensor. J. Pharm. Biomed. Anal. 2020, 188, 113447. [Google Scholar] [CrossRef]
- Akhtar, M.H.; Hussain, K.K.; Gurudatt, N.; Chandra, P.; Shim, Y.-B. Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens. Bioelectron. 2018, 116, 108–115. [Google Scholar] [CrossRef]
- Shen, W.-J.; Zhuo, Y.; Chai, Y.-Q.; Yang, Z.-H.; Han, J.; Yuan, R. Enzyme-free electrochemical immunosensor based on host–guest nanonets catalyzing amplification for procalcitonin detection. ACS Appl. Mater. Interfaces 2015, 7, 4127–4134. [Google Scholar] [CrossRef]
- Pereira, A.C.; Oliveira, A.E.F.; Bettio, G.B. β-Cyclodextrin electropolymerization: Mechanism, electrochemical behavior, and optimization. Chem. Pap. 2019, 73, 1795–1804. [Google Scholar] [CrossRef]
- Behyar, M.B.; Kholafazad-kordasht, H.; Hassanpour, S.; Hasanzadeh, M. An innovative electrically conductive biopolymer based on poly (β-cyclodextrin) towards recognition of ascorbic acid in real sample: Utilization of biocompatible advanced materials in biomedical analysis. J. Mol. Recognit. 2022, 35, e2953. [Google Scholar] [CrossRef]
- Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100428. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Solhi, E.; Jafari, M.; Mokhtarzadeh, A.; Soleymani, J.; Jouyban, A.; Mahboob, S. Ultrasensitive immunoassay of tumor protein CA 15.3 in MCF-7 breast cancer cell lysates and unprocessed human plasma using gold nanoparticles doped on the structure of mesoporous silica. Int. J. Biol. Macromol. 2018, 120, 2493–2508. [Google Scholar] [CrossRef]
- Amin, M.; Molinas, M.; Lyu, J.; Cai, X. Impact of power flow direction on the stability of VSC-HVDC seen from the impedance Nyquist plot. IEEE Trans. Power Electron. 2016, 32, 8204–8217. [Google Scholar] [CrossRef]
- Guerrero-Esteban, T.; Gutiérrez-Sánchez, C.; Martinez-Perinan, E.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Sensitive glyphosate electrochemiluminescence immunosensor based on electrografted carbon nanodots. Sens. Actuators B Chem. 2021, 330, 129389. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aletaha, N.; Ghaseminasab, K.; Hasanzadeh, M.; Kohansal, F.; Liu, Y.; Seidi, F. An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples. Biosensors 2022, 12, 791. https://doi.org/10.3390/bios12100791
Aletaha N, Ghaseminasab K, Hasanzadeh M, Kohansal F, Liu Y, Seidi F. An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples. Biosensors. 2022; 12(10):791. https://doi.org/10.3390/bios12100791
Chicago/Turabian StyleAletaha, Nastaran, Kambiz Ghaseminasab, Mohammad Hasanzadeh, Fereshteh Kohansal, Yuqian Liu, and Farzad Seidi. 2022. "An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples" Biosensors 12, no. 10: 791. https://doi.org/10.3390/bios12100791
APA StyleAletaha, N., Ghaseminasab, K., Hasanzadeh, M., Kohansal, F., Liu, Y., & Seidi, F. (2022). An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples. Biosensors, 12(10), 791. https://doi.org/10.3390/bios12100791