Electrochemical Microneedles: Innovative Instruments in Health Care
Abstract
:1. Introduction
2. Preparation of Microneedles and Microneedle Electrodes
2.1. 3D Printing
2.2. Magnetorheological Drawing Lithography
2.3. Two-Step Soft Lithography
2.4. Plating
3. Monitoring Physiological Indicators
3.1. Multiple Monitoring for Na+ and K+
3.2. Monitoring pH
3.3. Monitoring of Ketone Bodies
3.4. Determination of Abscisic Acid
3.5. Monitoring Glucose
3.6. Wearable Biochemical and Physiological Sensors
3.7. Integrated Chips
4. Drug Release
4.1. Release of Insulin
4.2. Drug Release to Bone Tissue
4.3. Delivery of Adriamycin
4.4. Delivery of Glucocorticoids
4.5. Summary
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonelli, D.; Scavetta, E.; Gualandi, I. Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors 2019, 19, 1186. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Hou, Z.; Wang, H.; Tong, X.; Shen, J.; Li, C. High-Sensitivity Sensor Based on Energy Transfer. IEEE Photon-Technol. Lett. 2022, 34, 787–790. [Google Scholar] [CrossRef]
- Bolat, G.; De la Paz, E.; Azeredo, N.F.; Kartolo, M.; Kim, J.; Silva, A.N.d.L.e.; Rueda, R.; Brown, C.; Angnes, L.; Wang, J.; et al. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal. Bioanal. Chem. 2022, 414, 5411–5421. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, C.A.; Bennett, E.P.; Kverneland, A.H.; Svane, I.M.; Donia, M.; Met, Ö. Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy. Mol. Ther.-Oncolytics 2022, 24, 417–428. [Google Scholar] [CrossRef]
- Heubner, C.; Maletti, S.; Lohrberg, O.; Lein, T.; Liebmann, T.; Nickol, A.; Schneider, M.; Michaelis, A. Electrochemical Characterization of Battery Materials in 2-Electrode Half-Cell Configuration: A Balancing Act between Simplicity and Pitfalls. Batter. Supercaps 2021, 4, 1310–1322. [Google Scholar] [CrossRef]
- Li, M.; Kan, R.; He, Y.; Liu, J.; Xu, Z.; Chen, B.; Yao, L.; Ruan, J.; Xia, H.; Deng, H.; et al. Development of a Laser Gas Analyzer for Fast CO2 and H2O Flux Measurements Utilizing Derivative Absorption Spectroscopy at a 100 Hz Data Rate. Sensors 2021, 21, 3392. [Google Scholar] [CrossRef] [PubMed]
- Abbasnezhad, N.; Zirak, N.; Shirinbayan, M.; Kouidri, S.; Salahinejad, E.; Tcharkhtchi, A.; Bakir, F. Controlled release from polyurethane films: Drug release mechanisms. J. Appl. Polym. Sci. 2020, 138, 50083. [Google Scholar] [CrossRef]
- Mizuno, Y.; Takasawa, K.; Hanada, T.; Nakamura, K.; Yamada, K.; Tsubaki, H.; Hara, M.; Tashiro, Y.; Matsuo, M.; Ito, T.; et al. Fabrication of novel-shaped microneedles to overcome the disadvantages of solid microneedles for the transdermal delivery of insulin. Biomed. Microdevices 2021, 23, 38. [Google Scholar] [CrossRef]
- Cárcamo-Martínez, Á.; Mallon, B.; Domínguez-Robles, J.; Vora, L.K.; Anjani, Q.K.; Donnelly, R.F. Hollow microneedles: A perspective in biomedical applications. Int. J. Pharm. 2021, 599, 120455. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, Z.Q.; Chen, Y.; Ren, G.Y.; Li, J.Y.; Guo, X.D. Some attempts to increase the amount of drug coated onto the microneedles. J. Drug Deliv. Sci. Technol. 2021, 67, 102986. [Google Scholar] [CrossRef]
- Oh, N.G.; Hwang, S.Y.; Na, Y.H. Fabrication of a PVA-Based Hydrogel Microneedle Patch. ACS Omega 2022, 7, 25179–25185. [Google Scholar] [CrossRef]
- Starr, N.J.; Khan, M.H.; Edney, M.K.; Trindade, G.F.; Kern, S.; Pirkl, A.; Kleine-Boymann, M.; Elms, C.; O’Mahony, M.M.; Bell, M.; et al. Elucidating the molecular landscape of the stratum corneum. Proc. Natl. Acad. Sci. USA 2022, 119, e2114380119. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Chen, J.; Han, Y.; Wei, M.; Liu, J.; Yu, X.; Li, F.; Hu, P.; Fu, L.; et al. Electrospun high bioavailable rifampicin–isoniazid-polyvinylpyrrolidone fiber membranes. Appl. Nanosci. 2021, 11, 2271–2280. [Google Scholar] [CrossRef]
- Rossi, G.P.; Cesari, M.; Lenzini, L.; Seccia, T.M. Disease monitoring of Primary Aldosteronism. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101417. [Google Scholar] [CrossRef]
- Ma, T.J. Remote sensing detection enhancement. J. Big Data 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Babity, S.; Couture, F.; Campos, E.V.R.; Hedtrich, S.; Hagen, R.; Fehr, D.; Bonmarin, M.; Brambilla, D. A Naked Eye-Invisible Ratiometric Fluorescent Microneedle Tattoo for Real-Time Monitoring of Inflammatory Skin Conditions. Adv. Healthc. Mater. 2021, 11, 2102070. [Google Scholar] [CrossRef]
- Shikida, M.; Hasegawa, Y.; Al Farisi, M.S.; Matsushima, M.; Kawabe, T. Advancements in MEMS technology for medical applications: Microneedles and miniaturized sensors. Jpn. J. Appl. Phys. 2022, 61, SA0803. [Google Scholar] [CrossRef]
- Miller, P.R.; Xiao, X.; Brener, I.; Burckel, D.B.; Narayan, R.; Polsky, R. Microneedle-Based Transdermal Sensor for On-Chip Potentiometric Determination of K+. Adv. Healthc. Mater. 2013, 3, 876–881. [Google Scholar] [CrossRef]
- Parolo, C.; Idili, A.; Ortega, G.; Csordas, A.; Hsu, A.; Arroyo-Currás, N.; Yang, Q.; Ferguson, B.S.; Wang, J.; Plaxco, K.W. Real-Time Monitoring of a Protein Biomarker. ACS Sens. 2020, 5, 1877–1881. [Google Scholar] [CrossRef]
- Zhao, L.; Wen, Z.; Jiang, F.; Zheng, Z.; Lu, S. Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring. RSC Adv. 2020, 10, 6163–6171. [Google Scholar] [CrossRef] [Green Version]
- Nanda, S.K.; Kumar, G.; Bhatia, V.; Singh, A.K. Kalman Filtering with Delayed Measurements in Non-Gaussian Environments. IEEE Access 2021, 9, 123231–123244. [Google Scholar] [CrossRef]
- Peng, X.; Yan, Y.-X.; Liu, H. On the use of fiber lasers in non-invasive blood glucose monitoring. Opt. Fiber Technol. 2022, 68, 102822. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Y.; Cai, M.; Jiang, X.; Hu, Y.; Dong, Z.; Yin, D.; Liu, Y.; Yang, S.; Liu, Z.; et al. Multimicrochannel Microneedle Microporation Platform for Enhanced Intracellular Drug Delivery. Adv. Funct. Mater. 2021, 32, 2109187. [Google Scholar] [CrossRef]
- Ge, X.; Tang, H.; Wang, X.; Liu, X.; Chen, S.; Wang, N.; Ni, G.; Yu, X.; Chen, S.; Liang, H.; et al. Geometry-Dependent Spectroscopic Contrast in Deep Tissues. iScience 2019, 19, 965–975. [Google Scholar] [CrossRef]
- Yi, R.-H.; Lo, C.-L.; Luo, D.; Lin, C.-H.; Weng, S.-W.; Lu, C.-W.; Liu, S.-W.; Chang, C.-H.; Su, H.-C. Combinational Approach To Realize Highly Efficient Light-Emitting Electrochemical Cells. ACS Appl. Mater. Interfaces 2020, 12, 14254–14264. [Google Scholar] [CrossRef]
- Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688. [Google Scholar] [CrossRef]
- Li, X.; Tan, B.; Zheng, J.; Xu, X.; Xiao, J.; Liu, Y. The Intervention of Data Mining in the Allocation Efficiency of Multiple Intelligent Devices in Intelligent Pharmacy. Comput. Intell. Neurosci. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Donnelly, R.F.; De Wael, K. Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose. Talanta 2022, 249, 123695. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef]
- Boccardi, M.; Dodich, A.; Albanese, E.; Gayet-Ageron, A.; Walter, M.; Rabinovici, G.D.; Carrillo, M.C.; Drzezga, A.; Hansson, O.; Nordberg, A.K.; et al. The biomarker roadmap for the validation for Alzheimer’s biomarkers: Methodological update for biomarkers of tauopathy. Alzheimer’s Dement. 2020, 16, e039063. [Google Scholar] [CrossRef]
- Chen, M.; Wang, C.; Hu, W. Organic photoelectric materials for X-ray and gamma ray detection: Mechanism, material preparation and application. J. Mater. Chem. C 2021, 9, 4709–4729. [Google Scholar] [CrossRef]
- Hassanin, H.; Sheikholeslami, G.; Sareh, P.; Ishaq, R.B. Microadditive Manufacturing Technologies of 3D Microelectromechanical Systems. Adv. Eng. Mater. 2021, 23, 2100422. [Google Scholar] [CrossRef]
- Bhagat, S.; Singh, S. Cultivating human tissues and organs over lab-on-a-chip models: Recent progress and applications. Prog. Mol. Biol. Transl. Sci. 2021, 187, 205–240. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, S.; Piatti, P.; Motto, M.; Rossi, V. Chromatin and DNA modifications in the Opaque2-mediated regulation of gene transcription during maize endosperm development. Plant Cell 2009, 21, 1410–1427. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ren, L.; Li, J.; Yao, L.; Chen, Y.; Liu, B.; Jiang, L. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 2018, 65, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Seeni, R.Z.; Zheng, M.; Lio, D.C.S.; Wiraja, C.; Yusoff, M.F.B.M.; Koh, W.T.Y.; Liu, Y.; Goh, B.T.; Xu, C. Targeted Delivery of Anesthetic Agents to Bone Tissues using Conductive Microneedles Enhanced Iontophoresis for Painless Dental Anesthesia. Adv. Funct. Mater. 2021, 31, 2105686. [Google Scholar] [CrossRef]
- Parrilla, M.; Cuartero, M.; Sánchez, S.P.; Rajabi, M.; Roxhed, N.; Niklaus, F.; Crespo, G.A. Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection. Anal. Chem. 2018, 91, 1578–1586. [Google Scholar] [CrossRef]
- Li, H.; Wu, G.; Weng, Z.; Sun, H.; Nistala, R.; Zhang, Y. Microneedle-Based Potentiometric Sensing System for Continuous Monitoring of Multiple Electrolytes in Skin Interstitial Fluids. ACS Sens. 2021, 6, 2181–2190. [Google Scholar] [CrossRef]
- Dervisevic, M.; Alba, M.; Yan, L.; Senel, M.; Gengenbach, T.R.; Prieto-Simon, B.; Voelcker, N.H. Transdermal Electrochemical Monitoring of Glucose via High-Density Silicon Microneedle Array Patch. Adv. Funct. Mater. 2021, 32, 2009850. [Google Scholar] [CrossRef]
- Ali, B.; Siddique, I.; Khan, I.; Masood, B.; Hussain, S. Magnetic dipole and thermal radiation effects on hybrid base micropolar CNTs flow over a stretching sheet: Finite element method approach. Results Phys. 2021, 25, 104145. [Google Scholar] [CrossRef]
- Kang, H.S.; Jolly, J.C.; Cho, H.; Kalpattu, A.; Zhang, X.A.; Yang, S. Three-Dimensional Photoengraving of Monolithic, Multifaceted Metasurfaces. Adv. Mater. 2020, 33, e2005454. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-W.; Jiang, S.-J.; Alamani, B.G.; Jucar, J.P.R.P.; Potato, D.N.C.; Chen, C. Environmentally benign and biocompatible sensing platform for electroanalytical determination of bisphenol A in the aquatic environment. Sustain. Chem. Pharm. 2022, 28, 100713. [Google Scholar] [CrossRef]
- Campisciano, V.; Burger, R.; Calabrese, C.; Liotta, L.F.; Meo, P.L.; Gruttadauria, M.; Giacalone, F. Straightforward preparation of highly loaded MWCNT–polyamine hybrids and their application in catalysis. Nanoscale Adv. 2020, 2, 4199–4211. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.C.; Pandey, G.; Narayan, R.J. Solid-state ion sensor for on-chip determination of potassium ion in body fluid. Med. Devices Sens. 2020, 3, e10110. [Google Scholar] [CrossRef]
- Zhou, J.-X.; Ding, F.; Tang, L.-N.; Li, T.; Li, Y.-H.; Zhang, Y.-J.; Gong, H.-Y.; Li, Y.-T.; Zhang, G.-J. Monitoring of pH changes in a live rat brain with MoS2/PAN functionalized microneedles. Analyst 2018, 143, 4469–4475. [Google Scholar] [CrossRef]
- Mugo, S.M.; Lu, W.; Lemieux, S. Stainless steel electrochemical capacitive microneedle sensors for multiplexed simultaneous measurement of pH, nitrates, and phosphates. Mikrochim. Acta 2022, 189, 206. [Google Scholar] [CrossRef]
- Teymourian, H.; Moonla, C.; Tehrani, F.; Vargas, E.; Aghavali, R.; Barfidokht, A.; Tangkuaram, T.; Mercier, P.P.; Dassau, E.; Wang, J. Microneedle-Based Detection of Ketone Bodies along with Glucose and Lactate: Toward Real-Time Continuous Interstitial Fluid Monitoring of Diabetic Ketosis and Ketoacidosis. Anal. Chem. 2019, 92, 2291–2300. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, L.; Li, M.; Li, C.; Li, P.; Li, H. Au@SnO2-vertical graphene-based microneedle sensor for in-situ determination of abscisic acid in plants. Mater. Sci. Eng. C 2021, 127, 112237. [Google Scholar] [CrossRef]
- Caliò, A.; Dardano, P.; Di Palma, V.; Bevilacqua, M.; Di Matteo, A.; Iuele, H.; De Stefano, L. Polymeric microneedles based enzymatic electrodes for electrochemical biosensing of glucose and lactic acid. Sens. Actuators B Chem. 2016, 236, 343–349. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, I.; Cho, S. Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Mikrochim. Acta 2018, 185, 250. [Google Scholar] [CrossRef]
- Yehya, A.; Carbone, S. Managing type 2 diabetes mellitus during COVID-19 pandemic: The bittersweet. Diabetes Metab. Res. Rev. 2020, 37, e3360. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Cao, J.; Chen, Q.; He, J.; Liu, Z.; Wang, J.; Li, X.; Yang, Y. Abscisic acid receptors maintain abscisic acid homeostasis by modulating UGT71C5 glycosylation activity. J. Integr. Plant Biol. 2020, 63, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Mahato, K.; Teymourian, H.; Longardner, K.; Litvan, I.; Wang, J. Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: Toward Parkinson management. Sens. Actuators B Chem. 2021, 354, 131234. [Google Scholar] [CrossRef]
- García-Guzmán, J.J.; Pérez-Ràfols, C.; Cuartero, M.; Crespo, G.A. Toward In Vivo Transdermal pH Sensing with a Validated Microneedle Membrane Electrode. ACS Sens. 2021, 6, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Dutta, G.; Regoutz, A.; Moschou, D. Enzyme-assisted glucose quantification for a painless Lab-on-PCB patch implementation. Biosens. Bioelectron. 2020, 167, 112484. [Google Scholar] [CrossRef]
- Juhasz, A.L.; Kastury, F.; Herde, C.; Tang, W. Application of soil amendments for reducing PFAS leachability and bioavailability. Environ. Pollut. 2022, 307, 119498. [Google Scholar] [CrossRef]
- Takura, T. Study Group: Research on Appropriate Medical Treatment Prices for Foreigners Visiting Japan Preliminary Examination of an Appropriate Price Calculation Method and Medical Treatment Costs for Foreign Visitors in Japan. Int. J. Environ. Res. Public Healthc. 2021, 18, 5837. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Mo, J.; Wang, H.; Huang, Q.; Yang, C.; Zhang, T.; Chen, H.; Hang, T.; Liu, F.; et al. A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment. Adv. Sci. 2021, 8, 2100827. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, B.Z.; Zhang, X.P.; Zheng, H.; Li, Z.; Zhang, C.Y.; Guo, X.D. Conductive Microneedle Patch with Electricity-Triggered Drug Release Performance for Atopic Dermatitis Treatment. ACS Appl. Mater. Interfaces 2022, 14, 31645–31654. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 247. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, D.; Gaur, P.; Joshi, D. Intelligent automated drug administration and therapy: Future of healthcare. Drug Deliv. Transl. Res. 2021, 11, 1878–1902. [Google Scholar] [CrossRef]
- Bläsius, F.; Horst, K.; Brokmann, J.; Lefering, R.; Andruszkow, H.; Hildebrand, F.; TraumaRegister DGU®. Helicopter Emergency Medical Service and Hospital Treatment Levels Affect Survival in Pediatric Trauma Patients. J. Clin. Med. 2021, 10, 837. [Google Scholar] [CrossRef]
- Thors, L.; Öberg, L.; Forsberg, E.; Wigenstam, E.; Larsson, A.; Bucht, A. Skin penetration and decontamination efficacy following human skin exposure to fentanyl. Toxicol. Vitr. 2020, 67, 104914. [Google Scholar] [CrossRef]
- Jin, Q.; Chen, H.-J.; Li, X.; Huang, X.; Wu, Q.; He, G.; Hang, T.; Yang, C.; Jiang, Z.; Li, E.; et al. Reduced Graphene Oxide Nanohybrid-Assembled Microneedles as Mini-Invasive Electrodes for Real-Time Transdermal Biosensing. Small 2019, 15, e1804298. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Mohan, A.M.V.; Soto, F.; Chrostowski, R.; Wang, J. A microneedle biosensor for minimally-invasive transdermal detection of nerve agents. Analyst 2017, 142, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Skaria, E.; Patel, B.A.; Flint, M.S.; Ng, K.W. Poly(lactic acid)/Carbon Nanotube Composite Microneedle Arrays for Dermal Biosensing. Anal. Chem. 2019, 91, 4436–4443. [Google Scholar] [CrossRef]
- Zheng, Y.; Omar, R.; Zhang, R.; Tang, N.; Khatib, M.; Xu, Q.; Milyutin, Y.; Saliba, W.; Broza, Y.Y.; Wu, W.; et al. A Wearable Microneedle-Based Extended Gate Transistor for Real-Time Detection of Sodium in Interstitial Fluids. Adv. Mater. 2022, 34, 2108607. [Google Scholar] [CrossRef]
- Goud, K.Y.; Moonla, C.; Mishra, R.K.; Yu, C.; Narayan, R.; Litvan, I.; Wang, J. Wearable Electrochemical Microneedle Sensor for Continuous Monitoring of Levodopa: Toward Parkinson Management. ACS Sens. 2019, 4, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Ribet, F.; Stemme, G.; Roxhed, N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices 2018, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Hegarty, C.; Casimero, C.; Davis, J. Electrochemically Controlled Dissolution of Nanocarbon–Cellulose Acetate Phthalate Microneedle Arrays. ACS Appl. Mater. Interfaces 2019, 11, 35540–35547. [Google Scholar] [CrossRef]
S.No. | WE Material | RE Material | Height (μm) | Base Diameter (μm) | MN Shape | Application | Ref. |
---|---|---|---|---|---|---|---|
1 | steel, reduced graphene oxide and Pt nanoparticles, PVP | steel, Ag/AgCl | 800 | 225 | circular cone | Detect H2O2 | [64] |
2 | stainless steel, carbon | stainless steel, Ag/AgCl | - | 435 | circular cone | Detect potassium | [37] |
3 | graphite powder, mineral oil | graphite powder, mineral oil, Ag/AgCl | 1500 | 425 | triangular pyramid | Monitoring of nerve agents | [65] |
4 | carbon, Cr, Au | Ag/AgCl | 600 | 400 | circular cone | Detect glucose | [58] |
5 | graphite powder, mineral oil, rhodium nanoparticles | Ag/AgCl | - | 500 | The cylinder is chamfered by a plane. | Monitoring of apomorphine | [53] |
6 | manganate, polylactic acid carboxyl multiwalled carbon nanotubes | Ag/AgCl, Polylactic acid carboxyl multiwalled carbon nanotubes | 870 | 250 | circular cone | Monitoring electrochemical changes in the skin | [66] |
7 | stainless steel, HA, PEDOT:PSS, Mn | stainless steel, PEDOT:PSS, HA, Mn | 550 | 300 | pyramid | Drug delivery | [36] |
8 | Au, polystyrene | Ag, Mn | 1000 | 750 | circular cone | Monitoring sodium | [67] |
9 | graphite powder, mineral oil, tyrosinase | Ag/AgCl | 1500 | 425 | pyramid | Monitoring levodopa | [68] |
10 | stainless steel, carbon, Ag/AgCl | stainless steel, carbon, Ag/AgCl | 500 | 400 | circular cone | Detect PH | [54] |
11 | Au, Si | Si, Ag/AgCl | 250 | 50 | circular cone | Detect glucose | [39] |
12 | Pt | Ag/AgCl | 700 | - | needle tubing | Detect glucose | [69] |
13 | carbon−polymer composite, manganese | Ag/AgCl | 350 | 200 | pyramid | Drug delivery | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Zhou, Q.; Gao, B. Electrochemical Microneedles: Innovative Instruments in Health Care. Biosensors 2022, 12, 801. https://doi.org/10.3390/bios12100801
Liao Z, Zhou Q, Gao B. Electrochemical Microneedles: Innovative Instruments in Health Care. Biosensors. 2022; 12(10):801. https://doi.org/10.3390/bios12100801
Chicago/Turabian StyleLiao, Zhijun, Qian Zhou, and Bingbing Gao. 2022. "Electrochemical Microneedles: Innovative Instruments in Health Care" Biosensors 12, no. 10: 801. https://doi.org/10.3390/bios12100801
APA StyleLiao, Z., Zhou, Q., & Gao, B. (2022). Electrochemical Microneedles: Innovative Instruments in Health Care. Biosensors, 12(10), 801. https://doi.org/10.3390/bios12100801