Label-Free Fluorescent Turn-On Glyphosate Sensing Based on DNA-Templated Silver Nanoclusters
Abstract
:1. Introduction
2. Materials and Apparatus
2.1. Chemicals and Reagents
2.2. Apparatus
3. Experimental Method
3.1. Preparation of DNA-Ag NCs
3.2. Protocol of the Glyphosate Detection
3.3. Glyphosate Detection in Real Samples
4. Results and Discussion
4.1. Sensing Strategies for Glyphosate Detection
4.2. Characterization of DNA-Ag NCs
4.3. Feasibility Verification of Glyphosate Detection
4.4. Optimization of Sensing Conditions
4.5. Analytical Performance of the Glyphosate Detection
4.6. Selectivity Analysis
4.7. Mechanism of Glyphosate Sensing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ingaramo, P.; Alarcón, R.; Muñoz-De-Toro, M.; Luque, E.H. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol. Cell. Endocrinol. 2020, 518, 110934. [Google Scholar] [CrossRef] [PubMed]
- Peillex, C.; Pelletier, M. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J. Immunotoxicol. 2020, 17, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Ighalo, J.O.; Ajala, O.J.; Adeniyi, A.G.; Babatunde, E.O.; Ajala, M.A. Ecotoxicology of glyphosate and recent advances in its mitigation by adsorption. Environ. Sci. Pollut. Res. 2021, 28, 2655–2668. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Yuan, D.; Ma, J. A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. Talanta 2016, 161, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Arkan, T.; Csámpai, A.; Molnár-Perl, I. Alkylsilyl derivatization of glyphosate and aminomethylphosphonic acid followed by gas chromatography mass spectrometry. Microchem. J. 2016, 125, 219–223. [Google Scholar] [CrossRef]
- Chen, F.; Lu, Q.; Huang, L.; Liu, B.; Liu, M.; Zhang, Y.; Liu, J. DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K + and pH in Lysosomes. Angew. Chem. Int. Ed. 2020, 60, 5453–5458. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, X.; Su, Y.; Liu, H.; Zhang, H.; Li, X.; Xu, W. The Fluorescent Palette of DNA-Templated Silver Nanoclusters for Biological Applications. Front. Chem. 2020, 8, 601621. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Gao, X.; Lin, X.; Liu, Y.; Wang, S. A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection. Sens. Actuators B Chem. 2019, 282, 712–718. [Google Scholar] [CrossRef]
- Dadmehr, M.; Karimi, M.A.; Korouzhdehi, B. A signal-on fluorescence based biosensing platform for highly sensitive detection of DNA methyltransferase enzyme activity and inhibition. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117731. [Google Scholar] [CrossRef]
- Li, M.; Xu, X.; Zhou, Z.; Xu, G.; Xie, Y.; Cai, Q. Label-free detection of microRNA: Two-stage signal enhancement with hairpin assisted cascade isothermal amplification and light-up DNA-silver nanoclusters. Mikrochim. Acta 2020, 187, 141. [Google Scholar] [CrossRef]
- Yan, Z.; Tian, C.; Sun, X.; Wu, Y.; Li, D.; Ye, B. Ratiometric detection of biothiols by using the DNA-templated silver nanoclusters–Hg2+ system. Anal. Methods 2018, 10, 706–712. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, Y.-C.; Li, H.-W.; Chang, H.-T. Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem. Commun. 2014, 50, 9800–9815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ye, B.-C. Label-free fluorescent detection of copper(ii) using DNA-templated highly luminescent silver nanoclusters. Anal. 2011, 136, 5139–5142. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, X.; Fu, Y.; Zhang, J. Enantioselective Recognition Mechanism of Ofloxacin via Cu(II)-Modulated DNA. J. Phys. Chem. B 2014, 118, 5300–5309. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC Trends Anal. Chem. 2014, 58, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific interactions between silver(i) ions and cytosine–cytosine pairs in DNA duplexes. Chem. Commun. 2008, 39, 4825–4827. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhu, J.; Fan, D.; Teng, Y.; Zhu, X.; Dong, S. A Multicolor Chameleon DNA-templated Silver Nanocluster and Its Application for Ratiometric Fluorescence Target Detection with Exponential Signal Response. Adv. Funct. Mater. 2017, 27, 46. [Google Scholar] [CrossRef]
- Richards, C.I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R.M. Oligonucleotide-Stabilized Ag Nanocluster Fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Choi, S.W.; Nagda, R.; Geczy, R.; Cho, S.K.; Bhang, Y.J.; Kim, T.-H.; Song, T.Y.; Lee, P.H.; Kang, J.-H.; et al. The structural shift of a DNA template between a hairpin and a dimer tunes the emission color of DNA-templated AgNCs. Nanoscale 2018, 10, 20717–20722. [Google Scholar] [CrossRef]
- Deiana, M.; Matczyszyn, K.; Massin, J.; Olesiak-Banska, J.; Andraud, C.; Samoc, M. Interactions of Isophorone Derivatives with DNA: Spectroscopic Studies. PLoS ONE 2015, 10, e0129817. [Google Scholar] [CrossRef]
- Ware, W.R. Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. J. Phys. Chem. 1962, 66, 455–458. [Google Scholar] [CrossRef]
- Shakir, M.; Azam, M.; Parveen, S.; Khan, A.U.; Firdaus, F. Synthesis and spectroscopic studies on complexes of N,N′-bis-(2-pyridinecarboxaldimine)-1,8-diaminonaphthalene (L); DNA binding studies on Cu(II) complex. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 71, 1851–1856. [Google Scholar] [CrossRef] [PubMed]
- Madsen, H.E.L.; Christensen, H.H.; Gottlieb-Petersen, C.; Andresen, A.F.; Smidsrød, O.; Pontchour, C.-O.; Phavanantha, P.; Pramatus, S.; Cyvin, B.N.; Cyvin, S.J. Stability Constants of Copper(II), Zinc, Manganese(II), Calcium, and Magnesium Complexes of N-(Phosphonomethyl)glycine (Glyphosate). Acta Chem. Scand. 1978, 32, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhou, Q.; Jiang, G. Nanomaterials for analysis and monitoring of emerging chemical pollutants. TrAC Trends Anal. Chem. 2014, 58, 10–22. [Google Scholar] [CrossRef]
- Chiu, H.-Y.; Lin, Z.-Y.; Tu, H.-L.; Whang, C.-W. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. J. Chromatogr. A 2008, 1177, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wu, G.; Guo, Y.; Ke, D.; Yin, J.; Wang, D.; Fan, X.; Liu, Z.; Ruan, L.; Hu, Y. Engineered glyphosate oxidase coupled to spore-based chemiluminescence system for glyphosate detection. Anal. Chim. Acta 2020, 1133, 39–47. [Google Scholar] [CrossRef]
- Xu, M.-L.; Gao, Y.; Li, Y.; Li, X.; Zhang, H.; Han, X.X.; Zhao, B.; Su, L. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 197, 78–82. [Google Scholar] [CrossRef]
- Guan, J.; Yang, J.; Zhang, Y.; Zhang, X.; Deng, H.; Xu, J.; Wang, J.; Yuan, M.-S. Employing a fluorescent and colorimetric picolyl-functionalized rhodamine for the detection of glyphosate pesticide. Talanta 2021, 224, 121834. [Google Scholar] [CrossRef]
- Sawetwong, P.; Chairam, S.; Jarujamrus, P.; Amatatongchai, M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn–ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021, 225, 122077. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Huo, D.; Ji, Z.; Ma, Y.; Yang, M.; Luo, H.; Luo, X.; Hou, C.; Lv, J. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate. Mikrochim. Acta 2020, 187, 341. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, J.; Liu, S.; Yang, J.; Zhang, H.; Yan, J.; Hu, X. Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation. Sensors Actuators B Chem. 2017, 242, 545–553. [Google Scholar] [CrossRef]
- Hong, C.; Ye, S.; Dai, C.; Wu, C.; Chen, L.; Huang, Z. Sensitive and on-site detection of glyphosate based on papain-stabilized fluorescent gold nanoclusters. Anal. Bioanal. Chem. 2020, 412, 8177–8184. [Google Scholar] [CrossRef] [PubMed]
- Gui, M.; Jiang, J.; Wang, X.; Yan, Y.; Li, S.; Xiao, X.; Liu, T.; Liu, T.; Feng, Y. Copper ion-mediated glyphosate detection with N-heterocycle based polyacetylene as a sensing platform. Sensors Actuators B Chem. 2017, 243, 696–703. [Google Scholar] [CrossRef]
- Wang, R.; Yan, X.; Sun, J.; Wang, X.; Zhao, X.-E.; Liu, W.; Zhu, S. Cu2+ modulated DNA-templated silver nanoclusters as a turn-on fluorescence probe for the detection of quinolones. Anal. Methods 2018, 10, 4183–4188. [Google Scholar] [CrossRef]
- Huang, X.-F.; Ren, B.-X.; Peng, C.-F.; Wei, X.-L.; Xie, Z.-J. Fluorescent sensing of mercury (II) and copper (II) ions based on DNA-templated Cu/Ag nanoclusters. Microchem. J. 2020, 158, 105214. [Google Scholar] [CrossRef]
- Zheng, X.; Yao, T.; Zhu, Y.; Shi, S. Cu2+ modulated silver nanoclusters as an on–off–on fluorescence probe for the selective detection of l-histidine. Biosens. Bioelectron. 2015, 66, 103–108. [Google Scholar] [CrossRef]
- Li, S.; Cao, W.; Kumar, A.; Jin, S.; Zhao, Y.; Zhang, C.; Zou, G.; Wang, P.C.; Li, F.; Liang, X.-J. Highly sensitive simultaneous detection of mercury and copper ions by ultrasmall fluorescent DNA–Ag nanoclusters. New J. Chem. 2014, 38, 1546–1550. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wang, Y.; Chang, Y.; Xiong, Z.H.; Huang, C.Z. Highly selective detection of bacterial alarmone ppGpp with an off–on fluorescent probe of copper-mediated silver nanoclusters. Biosens. Bioelectron. 2013, 49, 433–437. [Google Scholar] [CrossRef]
DNA | Sequence 5′-3′ |
---|---|
DNA 1 | CCCTTAATCCCC |
DNA 2 | ACCCGAACCTGGGCTACCA CCCTTAATCCCC |
DNA 3 | ATCCTCCCACCGGGCCTCCCACCATAAAAA CCCTTAATCCCC |
DNA 4 | GGCAGGTTGGGGTGACTAAAAA CCCTTAATCCCC |
DNA 5 | CTGACACCATATTATGAAGA CCCTTAATCCCC |
Name | λex/nm | λem/nm |
---|---|---|
DNA1-Ag NCs | 464 | 550 |
DNA2-Ag NCs | 530 | 620 |
DNA3-Ag NCs | 560 | 621 |
DNA4-Ag NCs | 596 | 671 |
DNA5-Ag NCs | 560 | 627 |
Method | Linearity Range | LOD | Ref. |
---|---|---|---|
Electrochemistry | 0.028~28 μg/mL | 10 ng/mL | [25] |
Chemiluminiscence | 0.015~12 μg/mL | 15 ng/mL | [26] |
SERS | 0.016~16 μg/mL | 2.4 ng/mL | [27] |
Fluorescence colorimetric | / | 0.69 ng/mL | [28] |
LFA | 0.005~50 μg/mL | 2 ng/mL | [29] |
Fluorescence | 0.1~1 μg/mL | 7.8 ng/mL | [30] |
Fluorescence | 0.3~3 μg/mL | 100 ng/mL | [31] |
Fluorescence | 0.04~0.4 ng/mL | 0.035 ng/mL | [32] |
Fluorescence | / | 13 ng/mL | [33] |
Fluorescence | 1~50 ng/mL | 0.2 ng/mL | This method |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Li, G.; Huang, X.; Qian, Z.; Peng, C. Label-Free Fluorescent Turn-On Glyphosate Sensing Based on DNA-Templated Silver Nanoclusters. Biosensors 2022, 12, 832. https://doi.org/10.3390/bios12100832
Cheng Y, Li G, Huang X, Qian Z, Peng C. Label-Free Fluorescent Turn-On Glyphosate Sensing Based on DNA-Templated Silver Nanoclusters. Biosensors. 2022; 12(10):832. https://doi.org/10.3390/bios12100832
Chicago/Turabian StyleCheng, Yuliang, Guowen Li, Xiufang Huang, Zhijuan Qian, and Chifang Peng. 2022. "Label-Free Fluorescent Turn-On Glyphosate Sensing Based on DNA-Templated Silver Nanoclusters" Biosensors 12, no. 10: 832. https://doi.org/10.3390/bios12100832
APA StyleCheng, Y., Li, G., Huang, X., Qian, Z., & Peng, C. (2022). Label-Free Fluorescent Turn-On Glyphosate Sensing Based on DNA-Templated Silver Nanoclusters. Biosensors, 12(10), 832. https://doi.org/10.3390/bios12100832