Quantitative SERS Detection of TBBPA in Electronic Plastic Based on Hydrophobic Cu-Ag Chips
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Preparation of Hydrophobic Cu-Ag Chips
2.3. Preparation of Hydrophilic Ag Chips
2.4. Analysis of TBBPA
2.5. Sample Pretreatment of the Electronics
3. Results and Discussion
3.1. Characterization of the Cu-Ag Chip and Its SERS Detection of TBBPA
3.2. Effects of the Preparation Conditions of the Cu-Ag Chip on Its Performance
3.3. Effect of the Hydrophobicity of the Cu-Ag Chip on the Detection of Hydrophobic Targets
3.4. Quantitative SERS Detection of TBBPA in Electronic Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okeke, E.S.; Huang, B.; Mao, G.; Chen, Y.; Zeng, Z.; Qian, X.; Wu, X.; Feng, W. Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. Environ. Res. 2022, 206, 112594. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Z. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review. Waste Manag. 2014, 34, 1455–1469. [Google Scholar] [CrossRef] [PubMed]
- Law, R.J.; Allchin, C.R.; de Boer, J.; Covaci, A.; Herzke, D.; Lepom, P.; Morris, S.; Tronczynski, J.; de Wit, C.A. Levels and trends of brominated flame retardants in the European environment. Chemosphere 2006, 64, 187–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Liu, W.; Chen, B.; He, J.; Chen, F.; Shan, X.; Du, Q.; Li, N.; Jia, X.; Tang, J. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata. Environ. Pollut. 2018, 243, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Barghi, M.; Shin, E.S.; Choi, S.D.; Behrooz, R.D.; Chang, Y.S. HBCD and TBBPA in human scalp hair: Evidence of internal exposure. Chemosphere 2018, 207, 70–77. [Google Scholar] [CrossRef]
- Tan, F.; Lu, B.; Liu, Z.; Chen, G.; Liu, Y.; Cheng, F.; Zhou, Y. Identification and quantification of TBBPA and its metabolites in adult zebrafish by high resolution liquid chromatography tandem mass spectrometry. Microchem. J. 2020, 154, 104566. [Google Scholar] [CrossRef]
- Liu, L.; Liu, A.; Zhang, Q.; Shi, J.; He, B.; Yun, Z.; Jiang, G. Determination of tetrabromobisphenol-A/S and their main derivatives in water samples by high performance liquid chromatography coupled with inductively coupled plasma tandem mass spectrometry. J. Chromatogr. A 2017, 1497, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Lv, H.; Wang, D.D.; Liao, K.C.; Wu, Y.Y.; Li, G.M.; Chen, Y. Graphene oxide composite microspheres as a novel dispersive solid-phase extraction adsorbent of bisphenols prior to their quantitation by HPLC–mass spectrometry. Microchem. J. 2022, 172, 106920. [Google Scholar] [CrossRef]
- Sun, X.; Peng, J.; Wang, M.; Wang, J.; Tang, C.; Yang, L.; Lei, H.; Li, F.; Wang, X.; Chen, J. Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2018, 1552, 10–16. [Google Scholar] [CrossRef]
- Barrett, C.A.; Orban, D.A.; Seebeck, S.E.; Lowe, L.E.; Owens, E.J. Development of a low-density-solventdispersive liquid-liquid microextractionwith gas chromatography and massspectrometry method for the quantitationof tetrabromobisphenol-A from dust. J. Sep. Sci. 2015, 38, 2503–2509. [Google Scholar] [CrossRef] [PubMed]
- Chokwe, T.B.; Okonkwo, J.O.; Sibali, L.L.; Ncube, E.J. An integrated method for the simultaneous determination of alkylphenol ethoxylates and brominated flame retardants in sewage sludge samples by ultrasonic-assisted extraction, solid phase clean-up, and GC-MS analysis. Microchem. J. 2015, 123, 230–236. [Google Scholar] [CrossRef]
- Xie, Z.; Ebinghaus, R.; Lohmann, R.; Heemken, O.; Caba, A.; Püttmann, W. Trace determination of the flame retardant tetrabromobisphenol A in the atmosphere by gas chromatography-mass spectrometry. Anal. Chim. Acta 2007, 584, 333–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Yang, M.; Wu, Y.; Li, J.; Qin, J.; Feng, F. A Low Cost Fe3O4-sctivated biochar electrode sensor by resource utilization of excess sludge for detecting tetrabromobisphenol A. Micromachines 2022, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhou, H.; Wu, W.; Wei, X.; Jiang, S.; Zhou, T.; Liu, D.; Lu, Q. Sensitive electrochemical detection of tetrabromobisphenol A based on poly(diallyldimethylammonium chloride) modified graphitic carbon nitride-ionic liquid doped carbon paste electrode. Electrochim. Acta 2017, 254, 214–222. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, Y.; Wu, W.; Jing, T.; Mei, S.; Zhou, Y. Synergetic signal amplification of multi-walled carbon nanotubes-Fe3O4 hybrid and trimethyloctadecylammonium bromide as a highly sensitive detection platform for tetrabromobisphenol A. Sci. Rep. 2016, 6, 38000. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Wu, W.; Wei, X.; Jiang, S.; Zhou, T.; Li, Q.; Lu, Q. Graphitic carbon nitride as electrode sensing material for tetrabromo-bisphenol—A determination. Sens. Actuators B Chem. 2017, 248, 673–681. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Hou, X.; Huang, Y.; Li, C.; Wu, K. Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical reponse to tetrabromobisphenol A. Mikrochim. Acta 2016, 183, 689–696. [Google Scholar] [CrossRef]
- Zhang, K.; Kwabena, A.S.; Wang, N.; Lu, Y.; Cao, Y.; Luan, Y.; Liu, T.; Peng, H.; Gu, X.; Xu, W. Electrochemical assays for the detection of TBBPA in plastic products based on rGO/AgNDs nanocomposites and molecularly imprinted polymers. J. Electroanal. Chem. 2020, 862, 114022. [Google Scholar] [CrossRef]
- Yakubu, S.; Xiao, J.; Gu, J.; Cheng, J.; Wang, J.; Li, X.; Zhang, Z. A competitive electrochemical immunosensor based on bimetallic nanoparticle decorated nanoflower-like MnO2 for enhanced peroxidase-like activity and sensitive detection of Tetrabromobisphenol A. Sens. Actuators B Chem. 2020, 325, 128909. [Google Scholar] [CrossRef]
- Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Perumal, J.; Wang, Y.; Attia, A.B.E.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef]
- Pu, H.; Huang, Z.; Xu, F.; Sun, D.W. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Food Chem. 2021, 343, 128548. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Zhang, Z.; Hou, X.; Ouyang, L.; Zhu, L. Rapid SERS inspection of carcinogenic aromatic amines in textiles by using liquid interfacial assembled Au array. Talanta 2021, 234, 122651. [Google Scholar] [CrossRef]
- Dai, P.; Li, H.; Huang, X.; Zhu, L. Highly Sensitive and Stable Copper-Based SERS Chips Prepared by a Chemical Reduction Method. Nanomaterials 2021, 11, 2770. [Google Scholar] [CrossRef] [PubMed]
- Kadasala, N.R.; Wei, A. Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters. Nanoscale 2015, 7, 10931–10935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, T.; Han, Y.; Guo, Z.; Wang, R.; Zheng, S.; Li, S.; Li, C.; Dai, X. Fabrication of Inherent Anticorrosion Superhydrophobic Surfaces on Metals. ACS Sustain. Chem. Eng. 2018, 6, 5598–5606. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, T.; Liu, J.; Wang, R.; Hu, W.; Liu, L. Volcano-like hierarchical superhydrophobic surface synthesized via facile one-step secondary anodic oxidation. Appl. Surf. Sci. 2021, 540, 148337. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Sadasivuni, K.K.; Xing, R.; Liu, S. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Sutar, R.S.; Kalel, P.J.; Latthe, S.S.; Kumbhar, D.A.; Mahajan, S.S.; Chikode, P.P.; Patil, S.S.; Kadam, S.S.; Gaikwad, V.H.; Bhosale, A.K.; et al. Superhydrophobic PVC/SiO2 coating for self-cleaning application. Macromol. Symp. 2020, 393, 2000034. [Google Scholar] [CrossRef]
- Qu, M.; Liu, Q.; He, J.; Li, J.; Liu, L.; Yang, C.; Yang, X.; Peng, L.; Li, K. A multifunctional superwettable material with excellent pH-responsive for controllable in situ separation multiphase oil/water mixture and efficient separation organics system. Appl. Surf. Sci. 2020, 515, 145991. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, T.; Wang, M.; Qiu, F.; Yue, X.; Yang, D. Hierarchical structurized waste brick with opposite wettability for on-demand oil/water separation. Chemosphere 2020, 251, 126348. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, Y.; Zhang, S.; Wei, S.; Ming, A.; Mao, C. Hydrophobic Wafer-Scale High-Reproducibility SERS Sensor Based on Silicon Nanorods Arrays Decorated with Au Nanoparticles for Pesticide Residue Detection. Biosensors 2022, 12, 273. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cai, J.; Fan, Y.; Zhang, Y.; Fang, H.; Yan, S. Effective Enrichment of Plasmonic Hotspots for SERS by Spinning Droplets on a Slippery Concave Dome Array. Biosensors 2022, 12, 270. [Google Scholar] [CrossRef]
- Fang, Z.; Luo, W.; Hu, H.; Xia, M.; Sun, Z.; Zhang, Y.; He, P. Ice-template triggered roughness: A facile method to prepare robust superhydrophobic surface with versatile performance. Prog. Org. Coat. 2019, 135, 345–351. [Google Scholar] [CrossRef]
- Kumar, A.; Gogoi, B. Development of durable self-cleaning superhydrophobic coatings for aluminium surfaces via chemical etching method. Tribol. Int. 2018, 122, 114–118. [Google Scholar] [CrossRef]
- Tuo, Y.; Chen, W.; Zhang, H.; Li, P.; Liu, X. One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil. Appl. Surf. Sci. 2018, 446, 230–235. [Google Scholar] [CrossRef]
- Liu, J.; Fang, X.; Zhu, C.; Xing, X.; Cui, G.; Li, Z. Fabrication of superhydrophobic coatings for corrosion protection by electro-deposition: A comprehensive review. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125498. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Zhou, P.; Zhu, L.; Tang, H. Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chem. Eng. J. 2017, 327, 849–854. [Google Scholar] [CrossRef]
- Dai, P.; Hou, D.; Guo, S.; Zhu, L.; Lei, M.; Tang, H. Ion chromatographic determination of total bromine in electronic devices in conjunction with a catalytic reduction debromination pretreatment. Anal. Chim. Acta 2019, 1082, 49–55. [Google Scholar] [CrossRef] [PubMed]
- EU Pack15. ROHS Annex II Dossier for TBBP-A Restriction Proposal for Substances in Electrical and Electronic Equipment under RoHS. Available online: https://rohs.exemptions.oeko.info/fileadmin/user_upload/RoHS_Pack_15 (accessed on 12 October 2022).
Sample (mg kg−1) | SERS | HPLC-UV |
---|---|---|
Cable | 1980.1 | 2040.3 |
Shell | 316.9 | 343.5 |
Spiked shell | 1750.9 | 1899.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, P.; Huang, X.; Cui, Y.; Zhu, L. Quantitative SERS Detection of TBBPA in Electronic Plastic Based on Hydrophobic Cu-Ag Chips. Biosensors 2022, 12, 881. https://doi.org/10.3390/bios12100881
Dai P, Huang X, Cui Y, Zhu L. Quantitative SERS Detection of TBBPA in Electronic Plastic Based on Hydrophobic Cu-Ag Chips. Biosensors. 2022; 12(10):881. https://doi.org/10.3390/bios12100881
Chicago/Turabian StyleDai, Pei, Xianzhi Huang, Yaqian Cui, and Lihua Zhu. 2022. "Quantitative SERS Detection of TBBPA in Electronic Plastic Based on Hydrophobic Cu-Ag Chips" Biosensors 12, no. 10: 881. https://doi.org/10.3390/bios12100881
APA StyleDai, P., Huang, X., Cui, Y., & Zhu, L. (2022). Quantitative SERS Detection of TBBPA in Electronic Plastic Based on Hydrophobic Cu-Ag Chips. Biosensors, 12(10), 881. https://doi.org/10.3390/bios12100881