A High-Performance Self-Supporting Electrochemical Biosensor to Detect Aflatoxin B1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of the SSE
2.3. Synthesis of the Gold-Modified SSE (Au/SSE)
2.4. Preparation of the BSA-Apt-Au/SSE
2.5. Preparation of the Spiked Samples
2.6. Biosensor Fabrication
2.7. Structural Characterization and Electrochemical Analysis
3. Results
3.1. Structural and Electrochemical Characterization
3.2. Fabrication of the Electrochemical Biosensor
3.3. Electrochemical Results of the Electrochemical Biosensors
3.4. Detection of AFB1
3.5. Effects of H2O2 Concentration
3.6. Stability, Reproducibility and Specificity
3.7. Real Sample Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, F.; Liu, D.; Dong, N.; Li, Y.; Meng, S.; You, T. Interaction between the Functionalized Probes: The Depressed Efficiency of Dual-Amplification Strategy on Ratiometric Electrochemical Aptasensor for Aflatoxin B1. Biosens. Bioelectron. 2021, 182, 113169. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Xiong, C.; Deng, Q.; Zhang, X.; Wang, S.; Chen, M.M. An Ultrasensitive CH3NH3PbBr3 Quantum Dots@SiO2-Based Electrochemiluminescence Sensing Platform Using an Organic Electrolyte for Aflatoxin B1 Detection in Corn Oil. Food Chem. 2022, 390, 133200. [Google Scholar] [CrossRef]
- Simmonds, M.S.J. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 82, Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. Phytochemistry 2004, 65, 139. [Google Scholar] [CrossRef]
- Zou, W.; Shi, R.; Wang, G.; Zhao, Z.; Zhao, F.; Yang, Z. Rapid and Sensitive Noncompetitive Immunoassay for Detection of Aflatoxin B1 Based on Anti-Immune Complex Peptide. Food Chem. 2022, 393, 133317. [Google Scholar] [CrossRef] [PubMed]
- Butler, W.H. Investigation of Aflatoxin Poisoning. Food Cosmet. Toxicol. 1963, 1, 335. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Zhu, C.; Wang, M.; Liu, Y.; You, T. A Ratiometry-Induced Successive Reusable Electrochemical Aptasensing Platform: Efficient Monitoring of Aflatoxin B1 in Peanut. Sens. Actuators B Chem. 2021, 336, 129021. [Google Scholar] [CrossRef]
- Rawal, S.; Kim, J.E.; Coulombe, R. Aflatoxin B1 in Poultry: Toxicology, Metabolism and Prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef]
- Rustom, I.Y.S. Aflatoxin in Food and Feed: Occurrence, Legislation and Inactivation by Physical Methods. Food Chem. 1997, 59, 57–67. [Google Scholar] [CrossRef]
- Andrade, P.D.; da Silva, J.L.G.; Caldas, E.D. Simultaneous Analysis of Aflatoxins B1, B2, G1, G2, M1 and Ochratoxin A in Breast Milk by High-Performance Liquid Chromatography/Fluorescence after Liquid-Liquid Extraction with Low Temperature Purification (LLE–LTP). J. Chromatogr. A 2013, 1304, 61–68. [Google Scholar] [CrossRef]
- Azri, F.; Sukor, R.; Selamat, J.; Abu Bakar, F.; Yusof, N.; Hajian, R. Electrochemical Immunosensor for Detection of Aflatoxin B1 Based on Indirect Competitive ELISA. Toxins 2018, 10, 196. [Google Scholar] [CrossRef]
- Okuma, T.A.; Huynh, T.P.; Hellberg, R.S. Use of Enzyme-Linked Immunosorbent Assay to Screen for Aflatoxins, Ochratoxin A, and Deoxynivalenol in Dry Pet Foods. Mycotoxin Res. 2018, 34, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zheng, J.; Ding, A.; Xu, L.; Chen, J.; Li, C.M. Highly Sensitive Aflatoxin B1 Sensor Based on DNA-Guided Assembly of Fluorescent Probe and TdT-Assisted DNA Polymerization. Food Chem. 2019, 294, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Yang, X.; Jiao, T.; Oyama, M.; Chen, Q.; Chen, X. Self-Enhanced Electrochemiluminescence of Luminol Induced by Palladium–Graphene Oxide for Ultrasensitive Detection of Aflatoxin B1 in Food Samples. Food Chem. 2022, 381, 132276. [Google Scholar] [CrossRef] [PubMed]
- Güner, A.; Çevik, E.; Şenel, M.; Alpsoy, L. An Electrochemical Immunosensor for Sensitive Detection of Escherichia Coli O157:H7 by Using Chitosan, MWCNT, Polypyrrole with Gold Nanoparticles Hybrid Sensing Platform. Food Chem. 2017, 229, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Ren, C.; Wang, C.; An, K.; Cui, H.; Hao, N.; Wang, K. Gold Nanoparticles Mediated Designing of Versatile Aptasensor for Colorimetric/Electrochemical Dual-Channel Detection of Aflatoxin B1. Biosens. Bioelectron. 2020, 166, 112443. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, J.; Li, D.; Li, Y. An Electrochemical Aptasensor Based on Gold Nanoparticles Dotted Graphene Modified Glassy Carbon Electrode for Label-Free Detection of Bisphenol A in Milk Samples. Food Chem. 2014, 162, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Villalonga, A.; Estabiel, I.; Pérez-Calabuig, A.M.; Mayol, B.; Parrado, C.; Villalonga, R. Amperometric Aptasensor with Sandwich-Type Architecture for Troponin I Based on Carboxyethylsilanetriol-Modified Graphene Oxide Coated Electrodes. Biosens. Bioelectron. 2021, 183, 113203. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Zhao, Q. A Signal-on Electrochemical Aptasensor for Rapid Detection of Aflatoxin B1 Based on Competition with Complementary DNA. Biosens. Bioelectron. 2019, 144, 111641. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, Q. A Reagentless Electrochemical Sensor for Aflatoxin B1 with Sensitive Signal-on Responses Using Aptamer with Methylene Blue Label at Specific Internal Thymine. Biosens. Bioelectron. 2020, 167, 112478. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, Z.; Yang, G.; Yang, H.; Zhao, F. A Novel Electrochemical Immunosensor for Aflatoxin B1 Based on Au Nanoparticles-Poly 4-Aminobenzoic Acid Supported Graphene. Appl. Surf. Sci. 2020, 527, 146934. [Google Scholar] [CrossRef]
- Radi, A.E.; Acero Sánchez, J.L.; Baldrich, E.; O’Sullivan, C.K. Reusable Impedimetric Aptasensor. Anal. Chem. 2005, 77, 6320–6323. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Li, J.; Fan, L.; Wen, J.; Zhang, J.; Zhang, Z.Q. A Label-Free Aptasensor Based on a Dual-Emission Fluorescent Strategy for Aflatoxin B1 Detection. Sens. Actuators B Chem. 2021, 346, 130561. [Google Scholar] [CrossRef]
- He, X.; Ying, Y.; Zhao, X.; Deng, W.; Tan, Y.; Xie, Q. Cobalt-Doped Tungsten Trioxide Nanorods Decorated with Au Nanoparticles for Ultrasensitive Photoelectrochemical Detection of Aflatoxin B1 Based on Aptamer Structure Switch. Sens. Actuators B Chem. 2021, 332, 129528. [Google Scholar] [CrossRef]
- Mei, M.; Mu, L.; Liang, S.; Wang, Y.; She, G.; Shi, W. A General Configurational Strategy to Quencher-Free Aptasensors. Biosens. Bioelectron. 2021, 178, 113025. [Google Scholar] [CrossRef]
- Goud, K.Y.; Catanante, G.; Hayat, A.; Satyanarayana, M.; Gobi, K.V.; Marty, J.L. Disposable and Portable Electrochemical Aptasensor for Label Free Detection of Aflatoxin B1 in Alcoholic Beverages. Sens. Actuators B Chem. 2016, 235, 466–473. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, M.; Yang, X.; Li, H.; Guo, Z.; Rahma, M.H. A Large Raman Scattering Cross-Section Molecular Embedded SERS Aptasensor for Ultrasensitive Aflatoxin B1 Detection Using CS-Fe3O4 for Signal Enrichment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 147–153. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, G.; Wang, X.; Zhang, Y.; Li, Z.; Liu, P.; Yu, B.; Zhang, J. A Metal-Organic Framework/Aptamer System as a Fluorescent Biosensor for Determination of Aflatoxin B1 in Food Samples. Talanta 2020, 219, 121342. [Google Scholar] [CrossRef]
- Lin, T.; Shen, Y. Fabricating Electrochemical Aptasensors for Detecting Aflatoxin B1 via Layer-by-Layer Self-Assembly. J. Electroanal. Chem. 2020, 870, 114247. [Google Scholar] [CrossRef]
- Geng, B.; Yan, F.; Liu, L.; Zhu, C.; Li, B.; Chen, Y. Ni/MoC Heteronanoparticles Encapsulated within Nitrogen-Doped Carbon Nanotube Arrays as Highly Efficient Self-Supported Electrodes for Overall Water Splitting. Chem. Eng. J. 2021, 406, 126815. [Google Scholar] [CrossRef]
- Amin, K.M.; Muench, F.; Kunz, U.; Ensinger, W. 3D NiCo-Layered Double Hydroxide@Ni Nanotube Networks as Integrated Free-Standing Electrodes for Nonenzymatic Glucose Sensing. J. Colloid Interface Sci. 2021, 591, 384–395. [Google Scholar] [CrossRef]
- Zhu, J.H.; Feng, Y.G.; Wang, A.J.; Mei, L.P.; Luo, X.; Feng, J.J. A Signal-on Photoelectrochemical Aptasensor for Chloramphenicol Assay Based on 3D Self-Supporting AgI/Ag/BiOI Z-Scheme Heterojunction Arrays. Biosens. Bioelectron. 2021, 181, 113158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, T.; Ren, R.; Zhang, J.; He, D.; Zhao, C.; Suo, H. In Situ Synthesis of Hierarchical Platinum Nanosheets-Polyaniline Array on Carbon Cloth for Electrochemical Detection of Ammonia. J. Hazard. Mater. 2020, 392, 122342. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Wang, Y.; Kuang, X.; Ma, H.; Wei, Q. Directly Assembled Electrochemical Sensor by Combining Self-Supported CoN Nanoarray Platform Grown on Carbon Cloth with Molecularly Imprinted Polymers for the Detection of Tylosin. J. Hazard. Mater. 2020, 398, 122778. [Google Scholar] [CrossRef] [PubMed]
- Zhe, T.; Li, R.; Wang, Q.; Shi, D.; Li, F.; Liu, Y.; Liang, S.; Sun, X.; Cao, Y.; Wang, L. In Situ Preparation of FeSe Nanorods-Functionalized Carbon Cloth for Efficient and Stable Electrochemical Detection of Nitrite. Sens. Actuators B Chem. 2020, 321, 128452. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Bahojb Noruzi, E.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Ghafori Gorab, M.; Masoud Hashemi, S.; Javanshir, S.; Ahangari Cohan, R.; et al. Applications of Carbon-Based Conductive Nanomaterials in Biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Ngah Demon, S.Z.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon Nanotubes: Functionalisation and Their Application in Chemical Sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon Nanotubes: Sensor Properties. A Review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Kurbanalieva, S.; Arlyapov, V.; Kharkova, A.; Perchikov, R.; Kamanina, O.; Melnikov, P.; Popova, N.; Machulin, A.; Tarasov, S.; Saverina, E.; et al. Electroactive Biofilms of Activated Sludge Microorganisms on a Nanostructured Surface as the Basis for a Highly Sensitive Biochemical Oxygen Demand Biosensor. Sensors 2022, 22, 6049. [Google Scholar] [CrossRef]
- Shen, Y.; Lua, A.C.; Xi, J.; Qiu, X. Ternary Platinum-Copper-Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 3464–3472. [Google Scholar] [CrossRef]
- Wang, W.; Gong, S.; Liu, J.; Ge, Y.; Wang, J.; Lv, X. Ag-Cu Aerogel for Electrochemical CO2 Conversion to CO. J. Colloid Interface Sci. 2021, 595, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Deng, T.; Zhu, G. Vertically Oriented Ni-MOF@Co(OH)2 Flakes towards Enhanced Hybrid Supercapacitior Performance. J. Colloid Interface Sci. 2021, 593, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, S.; Lu, W.; Lei, D.; Tian, Y.; Guo, M.; Mi, P.; Qu, N.; Zhao, Y. MXenes Induced Formation of Ni-MOF Microbelts for High-Performance Supercapacitors. J. Colloid Interface Sci. 2021, 592, 95–102. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Shang, N.; Chen, B.; Kang, Y.; Su, M.; Wang, C.; Zhang, Y. Co-Ni Layered Double Hydroxides Wrapped on Leaf-Shaped Copper Oxide Hybrids for Non-Enzymatic Detection of Glucose. J. Colloid Interface Sci. 2021, 592, 205–214. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, W.; Huang, Y.; Zhang, H. Facile Fabrication of Free-Standing Cu2O–Au Nanocomposite on Cu Foil for High Performance Glucose Sensing. J. Alloys Compd. 2020, 848, 156532. [Google Scholar] [CrossRef]
- Bessegato, G.G.; Cooke, M.D.; Christensen, P.A.; Wood, D.; Zanoni, M.V.B. Synthesis and Electrochemical Characterization of Si/TiO2/Au Composite Anode: Efficient Oxygen Evolution and Hydroxyl Radicals Generation. Electrochim. Acta 2021, 370, 137742. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, D.; Wang, J.; Lin, X.; Diao, G. Three-Dimensional Nitrogen-Doped Graphene-Based Metal-Free Electrochemical Sensors for Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, and Acetaminophen. Analyst 2021, 146, 964–970. [Google Scholar] [CrossRef]
- Singh, A.K.; Dhiman, T.K.; Lakshmi, G.; Solanki, P.R. Dimanganese Trioxide (Mn2O3) Based Label-Free Electrochemical Biosensor for Detection of Aflatoxin-B1. Bioelectrochemistry 2021, 137, 107684. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, F.; Guan, J.; Wei, W.; Zou, L. Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B1 Detection. Biosensors 2020, 11, 5. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Li, Y.; Ma, S.; Wang, M.; You, T. Hairpin DNA Assisted Dual-Ratiometric Electrochemical Aptasensor with High Reliability and Anti-Interference Ability for Simultaneous Detection of Aflatoxin B1 and Ochratoxin A. Biosens. Bioelectron. 2021, 174, 112654. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Sumana, G.; Marquette, C.A. Gold Nanobipyramids Integrated Ultrasensitive Optical and Electrochemical Biosensor for Aflatoxin B1 Detection. Talanta 2021, 222, 121578. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Yuan, W.; Li, Y.; Lu, Y.; Xiong, X.; Li, Y.; Liu, Y.; Lu, L. Sensitive Electrochemical Detection of Aflatoxin B1 Using DNA Tetrahedron-Nanostructure as Substrate of Antibody Ordered Assembly and Template of Aniline Polymerization. Food Chem. 2020, 331, 127368. [Google Scholar] [CrossRef] [PubMed]
Real Sample | Spiked AFB1 (pg mL−1) | Found AFB1 (pg mL−1) | Recovery (%) | RSD * (%) |
---|---|---|---|---|
Wine | 1.00 | 0.954 | 95.5 | 0.84 |
5.00 | 4.782 | 95.6 | 1.09 | |
10.0 | 10.671 | 106.7 | 1.88 | |
Soy sauce | 1.00 | 0.941 | 94.1 | 0.20 |
5.00 | 5.082 | 101.6 | 1.27 | |
10.0 | 10.042 | 100.4 | 1.62 |
Real Sample | Spiked AFB1 (ng mL−1) | Found AFB1 (ng mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Wine | 1.00 | 0.890 | 89.0 | 0.42 |
3.00 | 2.837 | 94.6 | 0.29 | |
5.00 | 5.065 | 101.3 | 1.04 | |
Soy sauce | 1.00 | 0.922 | 92.3 | 1.36 |
3.00 | 2.746 | 91.5 | 0.26 | |
5.00 | 4.376 | 87.5 | 0.96 |
Sample | Recovery (%) | LOD (pg mL−1) | Biosensor Type | Electrode Type | Detection Mode | Reference |
---|---|---|---|---|---|---|
Wine | 89.0~106.7 | 0.016 | Aptasensor | Au/SSE | Catalyzing the decomposition of hydrogen peroxide | Present work |
Soy sauce | 87.5~101.6 | 30 | ||||
Corn | 95.6~103.5 | 4.3 | Aptasensor | Gold electrode | Coupling of DNA walker with hybridization chain reaction | [51] |
Wheat | 94.0~102.2 | |||||
Maize | 95.0~102.0 | 31.2 | Electrical optical biosensor | Gold nanobipyramids/indium tin oxide | Immobilization of anti-AFB1 antibodies | [52] |
Wheat | 85.9~111.6 | 27 | Immunosensor | Gold nanoparticles/carbon nanofibers | Specific binding with AFB1 | [49] |
Grain | 92.2~109.5 | 50 | Immunosensor | Gold electrode | Direct competitive enzyme-linked immunoassay | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lin, T.; Shen, Y.; Li, H. A High-Performance Self-Supporting Electrochemical Biosensor to Detect Aflatoxin B1. Biosensors 2022, 12, 897. https://doi.org/10.3390/bios12100897
Zhang Y, Lin T, Shen Y, Li H. A High-Performance Self-Supporting Electrochemical Biosensor to Detect Aflatoxin B1. Biosensors. 2022; 12(10):897. https://doi.org/10.3390/bios12100897
Chicago/Turabian StyleZhang, Yunfei, Tingting Lin, Yi Shen, and Hongying Li. 2022. "A High-Performance Self-Supporting Electrochemical Biosensor to Detect Aflatoxin B1" Biosensors 12, no. 10: 897. https://doi.org/10.3390/bios12100897
APA StyleZhang, Y., Lin, T., Shen, Y., & Li, H. (2022). A High-Performance Self-Supporting Electrochemical Biosensor to Detect Aflatoxin B1. Biosensors, 12(10), 897. https://doi.org/10.3390/bios12100897