Selective Sensing of Darolutamide and Thalidomide in Pharmaceutical Preparations and in Spiked Biofluids
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Instruments
2.3. Synthesis of 2,4,8,10-Tetramethylpyrido[2′,3′:3,4]Pyrazolo[1,5-a]Pyrimidine 2
2.4. Application Methodology
2.4.1. Setting up of Calibration Graph
2.4.2. Sensing of Darolutamide and Thalidomide in Pharmaceutical Preparations
2.4.3. Determination of Darolutamide and Thalidomide in Spiked Biofluids
3. Results and Discussion
3.1. Synthesis of 2,4,8,10-Tetramethylpyrido[2′,3′:3,4]Pyrazolo[1,5-a]Pyrimidine 2
3.2. Impact of Experimental Variables on the Fluorescence
3.3. Validation
3.4. Applications
3.4.1. Raw Material and Dosage Form Analysis
3.4.2. Biosensing of Darolutamide and Thalidomide in Spiked Biofluids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brunton, L.L.; Knollmann, B.C. (Eds.) Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 14th ed.; McGraw Hill: New York, NY, USA, 2022. [Google Scholar]
- Androgen receptor modulating compounds. Available online: https://patents.google.com/patent/WO2011051540A1/en. (accessed on 10 March 2022).
- FDA Approves Darolutamide for Non-Metastatic Castration-Resistant Prostate Cancer. U.S. Food and Drug Administration (FDA) (Press Release). 31 July 2019. Archived from the Original on 23 November 2019. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-darolutamide-non-metastatic-castration-resistant-prostate-cancer (accessed on 22 November 2019).
- “Nubeqa EPAR”. European Medicines Agency (EMA). 29 January 2020. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/nubeqa (accessed on 16 August 2020).
- O’Neil, M.J. (Ed.) The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th ed.; Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Saini, N.K.; Sulochana, S.P.; Zainuddin, M.; Mullangi, R. Development and validation of a novel method for simultaneous quantification of enzalutamide, darolutamide and their active metabolites in mice dried blood spots using LC-MS/MS: Application to pharmacokinetic study in mice. ADMET DMPK 2018, 6, 242–257. [Google Scholar] [CrossRef]
- Dittakavi, S.; Nagasuri, P.K.; Sulochana, S.P.; Saim, S.M.; Mallurwar, S.R.; Zainuddin, M.; Dewang, P.; Rajagopal, S.; Mullangi, R. LC–MS/MS-ESI method for simultaneous quantification of darolutamide and its active metabolite, ORM-15341 in mice plasma and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2017, 145, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Balaji, N.; Sulochana, S.P.; Saini, N.K.; Kumar, S.; Mullangi, R. Validation of a chiral LC-MS/MS-ESI method for the simultaneous quantification of darolutamide diastereomers in mouse plasma and its application to a stereoselective pharmacokinetic study in mice. Biomed. Chromatogr. 2018, 32, e4173. [Google Scholar] [CrossRef] [PubMed]
- Balaji, N.; Sulochana, S.P.; Saini, N.K.; Kumar, S.; Mullangi, R. Validated chiral LC-ESI-MS/MS method for the simultaneous quantification of darolutamide diastereomers and its active metabolite in mice plasma: Application to a pharmacokinetic study. Drug Res. 2018, 68, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Nada, S.; Nouruddin, W.; Marco, M.; Souty, M.; Mohamed, M. Simultaneous determination of thalidomide and dexamethasone in rat plasma by validated HPLC and HPTLC with pharmacokinetic study. J. Chromatogr. Sci. 2019, 57, 130–138. [Google Scholar]
- Jiang, F.; Peng, X.; Cai, D.; Wen, D.; Liu, Y.; Zhi, M.; Chen, J.; Hu, P.; Wang, X.; Gao, Y.; et al. A validated LC–MS/MS method for the simultaneous determination of thalidomide and its two metabolites in human plasma: Application to a pharmacokinetic assay. Biomed. Chromatogr. 2018, 32, e4240. [Google Scholar] [CrossRef] [PubMed]
- Nan, B.; Cui, X.-Y.; Wang, J.; Sun, C.G.; Mei, H.K.; Liang, B.B.; Cai, Y.; Song, X.J.; Gu, J.K.; Wang, R. Determination of thalidomide concentration in human plasma by liquid chromatography-tandem mass spectrometry. Exp. Ther. Med. 2013, 5, 626–630. [Google Scholar]
- Yang, H.; Hu, Z.; Chan, S.Y.; Ho, P.C.; Chan, E.; Duan, W.; Goh, B.C.; Zhou, S. Determination of thalidomide by high performance liquid chromatography: Plasma pharmacokinetic studies in the rat. J. Pharm. Biomed. Anal. 2005, 1, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Talaat, W.; Kaddah, M.M.; Keshk, R. Selective sensing of the nucleoside analogue, trifluridine and tipiracil in dosage form and biological matrices. Talanta 2022, 238, 123009. [Google Scholar] [CrossRef] [PubMed]
- Abdullatef, O.; Morshedy, S.; Khalifa, Y.; Talaat, W. Spectrofluorimetric determination of tianeptine using its quenching effect on Vilazodone. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 251, 119412. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.; Tsiminis, G.; Spooner, N.A.; Mon, T.M. Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers. Sens. Actuators B Chem. 2014, 199, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Pandy, S.; Acree, W.E., Jr.; Fetzer, J.C. Spectrochemical investigations in molecularly organized solvent media: Evaluation of nitromethane as a selective fluorescence quenching agent for alternant PAHs dissolved in micellar solvent media. Anal. Chim. Acta 1996, 324, 175–181. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Awad, Y.E.; El-Hallouty, S.M.; El-Araby, M. Design, Synthesis and Cancer Cell Line Activities of Pyrazolo[3,4-b]pyridine Derivatives. Open J. Med. Chem. 2012, 2, 78. [Google Scholar]
- Keshk, R.M.; Izzularab, B.M. Design, Synthesis and Biological Evaluation of Cyanopyridines, Pyridopyrazolopyrimidines and Pyridopyrazolotriazines as Potential Anticancer Agents. Curr. Org. Synth. 2022, 15, 103846. [Google Scholar] [CrossRef] [PubMed]
- Keshk, R. Design and synthesis of new series of 3-cyanopyridine and pyrazolopyridine derivatives. J. Heterocycl. Chem. 2020, 57, 3384. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Atikins, P.W.; de Paula, J.; James, K. Atkins’ Physical Chemistry, 11th ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Mandal, A.B.; Nair, B.U.; Ramaswamy, D. Determination of the critical micelle concentration of surfactants and the partition coefficient of an electrochemical probe by using cyclic voltammetry. Langmuir 1988, 4, 736–739. [Google Scholar] [CrossRef]
- Chakraborty, T.; Ghosh, S.; Moulik, S.P. Micellization and Related Behavior of Binary and Ternary Surfactant Mixtures in Aqueous Medium: Cetyl Pyridinium Chloride (CPC), Cetyl Trimethyl Ammonium Bromide (CTAB), and Polyoxyethylene (10) Cetyl Ether (Brij-56) Derived System. J. Phys. Chem. B 2005, 109, 14813–14823. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, B. Temperature effect on the nanostructure of SDS micelles in water. J. Res. Natl. Inst. Stand. Technol. 2013, 118, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Wolfbeis, O.S.; Hof, M.; Hutterer, R.; Fidler, V. Fluorescence Spectroscopy in Biology; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Zhai, X.; Zhang, P.; Liu, C.; Bai, T.; Li, W.; Dai, L.; Liu, W. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 2012, 48, 7955. [Google Scholar] [CrossRef] [PubMed]
- Talaat, W.; ElOnsy, S.; Keshk, R. Fluorescent sensing for some nitric oxide donors in dosage forms and biological matrices. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 257, 119788. [Google Scholar] [CrossRef] [PubMed]
- ICH Harmonized Tripartite, Guidelines, Validation of Analytical Procedures. Text and Methodology, Q2(RI) Curent Step 4, Version and Parent Guidelines on Methodologies Dated November 6/1996, Incorporated on November 2005, accepted July 2012. Available online: http://www.ich.org/fileadmin/Publicwebsite/ICHProducts/GuidlineQuality/Q2RI/step4/Q2RIGuidline.pdf (accessed on 1 May 2022).
- Miller, J.C.; Miller, J.N. Statistics for Analytical Chemistry, 4th ed.; Ellis-Howood: New York, NY, USA, 1993. [Google Scholar]
(A) | ||||
---|---|---|---|---|
Drug | Conc. Added (µg/mL) | %Found | %RSD | %Er |
Darolutamide | Intra-day | |||
0.02 | 100.50 | 0.45 | 0.26 | |
0.1 | 99.87 | 0.33 | 0.19 | |
0.5 | 99.55 | 0.24 | 0.14 | |
Inter-day | ||||
0.02 | 99.88 | 0.55 | 0.32 | |
0.1 | 100.20 | 0.41 | 0.24 | |
0.5 | 100.12 | 0.28 | 0.16 | |
Thalidomide | Intra˗day | |||
0.05 | 99.80 | 0.35 | 0.20 | |
0.1 | 100.10 | 0.22 | 0.13 | |
0.5 | 99.70 | 0.41 | 0.24 | |
Inter˗day | ||||
0.05 | 100.20 | 0.30 | 0.17 | |
0.1 | 100.10 | 0.25 | 0.14 | |
0.5 | 99.70 | 0.35 | 0.20 | |
(B) | ||||
Darolutamide spiked plasma | Intra˗day | |||
0.03 | 98.35 | 1.22 | 0.70 | |
0.1 | 100.88 | 1.45 | 0.84 | |
0.5 | 101.20 | 1.3 | 0.75 | |
Inter˗day | ||||
0.03 | 100.50 | 1.50 | 0.87 | |
0.1 | 100.90 | 1.21 | 0.70 | |
0.5 | 98.50 | 1.44 | 0.83 | |
Darolutamide spiked urine | Intra˗day | |||
0.03 | 100.42 | 1.20 | 0.70 | |
0.1 | 99.20 | 0.98 | 0.57 | |
0.5 | 101.10 | 1.30 | 0.75 | |
Inter˗day | ||||
0.03 | 99.30 | 1.45 | 0.84 | |
0.1 | 100.80 | 1.33 | 0.77 | |
0.5 | 100.50 | 1.10 | 0.64 | |
Thalidomide spiked plasma | Intra˗day | |||
0.05 | 100.50 | 1.3 | 0.75 | |
0.1 | 98.77 | 1.1 | 0.64 | |
0.5 | 100.80 | 1.35 | 0.78 | |
Inter˗day | ||||
0.05 | 101.10 | 1.4 | 0.81 | |
0.1 | 100.70 | 1.5 | 0.87 | |
0.5 | 99.10 | 1.2 | 0.70 | |
Thalidomide spiked urine | Intra˗day | |||
0.05 | 98.77 | 0.9 | 0.52 | |
0.1 | 100.40 | 1.3 | 0.75 | |
0.5 | 101.40 | 1.2 | 0.70 | |
Inter˗day | ||||
0.05 | 101.30 | 1.5 | 0.87 | |
0.1 | 100.70 | 1.5 | 0.87 | |
0.5 | 100.40 | 1.2 | 0.70 |
(A) | |||||
---|---|---|---|---|---|
Parameter | Proposed Method | Comparison Method [8,10] | |||
Darolutamide | Taken conc.(µg/mL) | %Recovery | Taken conc. (µg/mL) | %Recovery [8] | |
0.02 | 99.8 | 0.1 | 100.8 | ||
0.05 | 100.2 | 0.5 | 99.2 | ||
0.1 | 99.75 | 1.0 | 99.3 | ||
0.3 | 100.4 | ||||
0.5 | 100.5 | ||||
Mean ± SD | 100.31 ± 0.34 | 99.4 ± 0.51 | |||
F-test | 2.4 | (3.619) * | |||
t-test | 1.12 | (2.306) * | |||
Thalidomide | 0.05 | 100.1 | 0.1 | 99.15 [10] | |
0.08 | 99.9 | 0.5 | 100.2 | ||
0.1 | 99.8 | 1.0 | 99.8 | ||
0.3 | 100.3 | ||||
0.5 | 100.5 | ||||
Mean ± SD | 99.92 ± 0.28 | 100.05 ± 0.41 | |||
F-test | 2.5 | (3.619) * | |||
t-test | 1.05 | (2.306) * | |||
(B) | |||||
Nubeqa® tablet | Taken conc. (µg/mL) | %Recovery | Taken conc. (µg/mL) | %Recovery [8] | |
0.02 | 100.8 | 0.1 | 100.6 | ||
0.05 | 99.5 | 0.5 | 99.8 | ||
0.1 | 99.8 | 1.0 | 99.1 | ||
0.3 | 100.6 | ||||
0.5 | 100.5 | ||||
Mean ± SD | 100.24 ± 0.6 | 99.8 ± 0.65 | |||
F-test | 2.2 | (3.619) * | |||
t-test | 1.3 | (2.306) * | |||
Thalidomide capsule | 0.05 | 99.3 | 0.1 | 100.3 [10] | |
0.08 | 99.7 | 0.5 | 100.5 | ||
0.1 | 100.8 | 1.0 | 99.4 | ||
0.3 | 100.5 | ||||
0.5 | 99.2 | ||||
Mean ± SD | 99.9 ± 0.74 | 100.1 ± 0.76 | |||
F-test | 2.7 | (3.619) * | |||
t-test | 1.3 | (2.306) * |
Parameters | Darolutamide | Thalidomide | |
---|---|---|---|
Spiked plasma | %Found ± SD * | 100.20 ± 1.40 | 100.5 ± 1.50 |
%RSD | 1.40 | 1.50 | |
Spiked urine | %Found ± SD * | 100.15 ± 1.30 | 99.50 ± 1.35 |
%RSD | 1.30 | 1.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talaat, W.; Farahat, A.A.; Keshk, R.M. Selective Sensing of Darolutamide and Thalidomide in Pharmaceutical Preparations and in Spiked Biofluids. Biosensors 2022, 12, 1005. https://doi.org/10.3390/bios12111005
Talaat W, Farahat AA, Keshk RM. Selective Sensing of Darolutamide and Thalidomide in Pharmaceutical Preparations and in Spiked Biofluids. Biosensors. 2022; 12(11):1005. https://doi.org/10.3390/bios12111005
Chicago/Turabian StyleTalaat, Wael, Abdelbasset A. Farahat, and Reda Mohammed Keshk. 2022. "Selective Sensing of Darolutamide and Thalidomide in Pharmaceutical Preparations and in Spiked Biofluids" Biosensors 12, no. 11: 1005. https://doi.org/10.3390/bios12111005
APA StyleTalaat, W., Farahat, A. A., & Keshk, R. M. (2022). Selective Sensing of Darolutamide and Thalidomide in Pharmaceutical Preparations and in Spiked Biofluids. Biosensors, 12(11), 1005. https://doi.org/10.3390/bios12111005