The Simultaneous Determination of Chlorpyrifos–Ethyl and –Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. Synthesis of Haptens and Artificial Antigens
2.4. Preparation and Characterization of Anti-CPS mAb
2.5. Preparation of Fluorescence Probes
2.6. Development of the FICA
2.7. Optimization of FICA
2.8. Sample Preparation
2.9. Validation by GC-MS/MS
3. Results and Discussion
3.1. Screening and Characterization of Anti-CPS mAb
3.2. Development and Optimization of FICA
3.3. Sample Pretreatment
3.4. Evaluation of the FICA
3.5. Comparison of the FICA with GC-MS/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Zhang, Q.; Liu, G.C.; Luo, X.X.; Li, F.M.; Zhang, Y.P.; Wang, Z.Y. Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: Influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence. Sci. Total Environ. 2018, 657, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Luo, J.X.; Beloglazova, N.; Yang, S.P.; Saeger, S.D.; Mari, G.M.; Zhang, S.X.; Shen, J.Z.; Wang, Z.H.; Yu, X.Z. Portable multiplex immunochromatographic assay for quantitation of two typical algae toxins based on dual-color fluorescence microspheres. J. Agric. Food Chem. 2019, 67, 6041–6047. [Google Scholar] [CrossRef]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.X.; Low, F.; Lee, B.H.K.; Alstrup, A.L.O.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.U.; Asghar, W.; Nazir, W.; Sandhu, M.A.; Ahmed, A.; Khalid, N. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Sci. Total Environ. 2021, 755, 142649. [Google Scholar] [CrossRef] [PubMed]
- GB 2763-2021; China National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. Standardization Administration of China: Beijing, China, 2021.
- EU Plant Pesticides Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=pesticide.residue.selection&language=EN (accessed on 22 February 2022).
- EPA. Chlorpyrifos: Preliminary Human Health Risk Assessment for Registration Review; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Huang, X.C.; Ma, J.K.; Feng, R.X.; Wei, S.L. Simultaneous determination of five organophosphorus pesticide residues in different food samples by solid-phase microextraction fibers coupled with high-performance liquid chromatography. J. Sci. Food Agric. 2019, 99, 6998–7007. [Google Scholar] [CrossRef]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R. Estimation of pesticide residues in selected products of plant origin from poland with the use of the HPLC-MS/MS technique. Agriculture 2020, 10, 192. [Google Scholar] [CrossRef]
- Huang, M.; Qin, X.X.; Luo, X.S.; Yu, W.W.; Yang, G.Q.; Zhang, K.K.; Hu, D.Y. A liquid chromatography with tandem mass spectrometry method to simultaneously determinate chlorpyrifos, imidacloprid and imidacloprid metabolites in wheat. J. Sep. Sci. 2019, 42, 1210–1221. [Google Scholar] [CrossRef]
- Garlito, B.; Ibáñez, M.; Portolés, T.; Serrano, R.; Amlund, H.; Lundebye, A.K.; Sanden, M.; Berntssen, M.H.G.; Hernández, F. LC-MS/MS method for the determination of organophosphorus pesticides and their metabolites in salmon and zebrafish fed with plant-based feed ingredients. Anal. Bioanal. Chem. 2019, 411, 7281–7291. [Google Scholar] [CrossRef]
- Maftouh, I.; Iddar, A.; Moussaif, A.; Abbadi, N.E.; Mesfioui, A. Development of an enzyme-linked immunosorbent assay for detection of Chlorpyrifos-ethyl and its metabolites 3,5,6-Trichloro-2-Pyridinol and Diethylthiophosphate. Int. J. Environ. Anal. 2020, 100, 1336–1349. [Google Scholar] [CrossRef]
- Kim, Y.A.; Lee, E.H.; Kim, K.O.; Lee, Y.T.; Hammock, B.D.; Lee, H.S. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos. Anal. Chim. Acta 2011, 693, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Hua, X.D.; Qian, G.L.; Yang, J.F.; Hu, B.S.; Fan, J.Q.; Qin, N.; Li, G.; Wang, Y.Y.; Liu, F.Q. Development of an immunochromatographic assay for the rapid detection of chlorpyrifos-methyl in water samples. Biosens. Bioelectron. 2011, 26, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, W.C.; Lu, Y.T.; Cheng, G.H. Development of an immunochromatographic assay for the rapid detection of bromoxynil in water. Environ. Pollut. 2008, 156, 136–142. [Google Scholar] [CrossRef]
- Dou, X.W.; Zhang, L.; Liu, C.M.; Li, Q.; Luo, J.Y.; Yang, M.H. Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Mikrochim. Acta 2017, 185, 41. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Lu, Q.; Wang, W.W.; Song, Y.; Tu, X.M.; Zhu, C.Z.; Smith, J.N.; Du, D.; Fu, Z.F.; Lin, Y.H. Dual-readout immunochromatographic assay by utilizing MnO2 nanoflowers as the unique colorimetric/chemiluminescent probe. Anal. Chem. 2018, 90, 5147–5152. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.Q.; Cai, J.; Zhang, B.; Zhao, Q.; Piao, J.F.; Peng, W.P.; Gao, W.C.; Zhou, D.M.; Zhao, M.; Chang, J. A review of fluorescent signal-based lateral flow immunochromatographic strips. J. Mater. Chem. B 2017, 5, 5079–5091. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, L.Q.; Liu, H.Y.; Xu, L.G.; Kuang, H. Rapid and sensitive detection of ochratoxin A in rice flour using a fluorescent microsphere immunochromatographic test strip assay. Food Agric. Immunol. 2020, 31, 563–574. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Xu, L.G.; Kuang, H.; Xiao, J.; Xu, C.L. Fluorescent microsphere immunochromatographic sensor for ultrasensitive monitoring deoxynivalenol in agricultural products. Microchem. J. 2021, 164, 106024. [Google Scholar] [CrossRef]
- Dzantiev, B.B.; Byzova, N.A.; Urusov, A.E.; Zherdev, A.V. Immunochromatographic methods in food analysis. Trends Anal. Chem. 2014, 55, 81–93. [Google Scholar] [CrossRef]
- Majdinasab, M.; Zareian, M.; Zhang, Q.; Li, P.W. Development of a new format of competitive immunochromatographic assay using secondary antibody–europium nanoparticle conjugates for ultrasensitive and quantitative determination of ochratoxin A. Food Chem. 2019, 275, 721–729. [Google Scholar] [CrossRef]
- Khan, N.S.; Pradhan, D.; Choudhary, S.; Saxena1, P.; Poddar, N.K.; Jain, A.K. Immunoassay-based approaches for development of screening of chlorpyrifos. J. Anal. Sci. Technol. 2021, 12, 32. [Google Scholar] [CrossRef]
- Chen, Z.J.; Huang, Z.C.; Sun, Y.M.; Xu, Z.L.; Liu, J.W. The most active oxidase-mimicking Mn2O3 nanozyme for biosensor signal generation. Chem. A Eur. J. 2021, 27, 9597–9604. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Liu, X.X.; Xiao, Z.L.; Fu, H.J.; Huang, Y.P.; Huang, S.Y.; Shen, Y.D.; He, F.; Yang, X.X.; Bruce, H.; et al. Production of a specific monoclonal antibody for 1-naphthol based on novel hapten strategy and development of an easy-to-use ELISA in urine samples. Ecotoxicol. Environ. Saf. 2020, 196, 110533. [Google Scholar] [CrossRef] [PubMed]
- Qie, Z.W.; Liu, Q.Q.; Yan, W.L.; Gao, Z.C.; Meng, W.; Xiao, R.; Wang, S.Q. Universal and ultrasensitive immunochromatographic assay by using an antigen as a bifunctional element and antialbumin antibody on a test line. Anal. Chem. 2019, 91, 9530–9537. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.P.; Ha, W.Z.; Xiao, Z.L.; Lei, H.T.; Shen, Y.D.; Sun, Y.M.; Xu, Z.L. Development of a simple, fast, and quantitative lateral flow immunochromatographic strip for folic acid. Food Anal. Methods 2017, 10, 2444–2453. (accessed on 20 January 2017). [Google Scholar] [CrossRef]
- Liu, Z.W.; Hua, Q.C.; Wang, J.; Liang, Z.Q.; Li, J.H.; Wu, J.X.; Shen, X.; Lei, H.T.; Li, X.M. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosens. Bioelectron. 2020, 158, 112178. [Google Scholar] [CrossRef]
- GB 23200.113-2018; China National Food Safety Standard-Determination of 208 Pesticides and Metabolites Residues in Foods of Plant Origin-Gas Chromatography-Tandem Mass Spectrometry Method. Standardization Administration of China: Beijing, China, 2018.
- Xu, Z.L.; Shen, Y.D.; Beier, R.C.; Yang, J.Y.; Lei, H.T.; Wang, H.; Sun, Y.M. Application of computer-assisted molecular modeling for immunoassay of low molecular weight food contaminants: A review. Anal. Chim. Acta. 2009, 647, 125–136. [Google Scholar] [CrossRef]
- Qian, G.L.; Wang, L.M.; Wu, Y.R.; Zhang, Q.; Sun, Q.; Liu, Y.; Liu, F.Q. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chem. 2009, 117, 364–370. [Google Scholar] [CrossRef]
- Goel, P. Immunodiagnosis of pesticides: A review. Afr. J. Biotechnol. 2013, 12, 7158–7167. [Google Scholar] [CrossRef]
- Maftouh, I.; Moussaif, A.; Moutaouakkil, A.; Iddar, A.; Mzibri, M.; Mesfioui, A.; Abbadi, N.E. Synthesis of haptens for immunoassay of chlorpyrifos-ethyl as organophosphorus pesticides. JMES 2017, 8, 878–883. [Google Scholar]
- Liu, Y.H.; Chen, J.; Guo, Y.R.; Wang, C.M.; Liang, X.; Zhu, G.N. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural samples. J. Environ. Sci. Health B 2011, 46, 313–320. [Google Scholar] [CrossRef]
- Ali, A.M.; Ryad, L. Thermal and photodecomposition of chlorpyrifos and profenofos insecticides. Curr. Sci. Int. 2018, 07, 419–422. [Google Scholar]
- Luo, L.; Xu, Z.L.; Yang, J.Y.; Xiao, Z.L.; Zeng, D.P.; Li, Y.J.; Li, Y.J.; Shen, Y.D.; Sun, Y.M.; Lei, H.T.; et al. A sensitivity-enhanced heterologous immunochromatographic assay based on monoclonal antibody for the rapid detection of histamine in saury samples. RSC Adv. 2015, 5, 78833–78840. [Google Scholar] [CrossRef]
- Su, J.; Yang, H.; Chen, J.L.; Yin, H.C.; Tang, R.H.; Xie, Y.W.; Song, K.; Huyan, T.; Wang, H.; Wang, W.; et al. Development of a class-specific immunochromatographic strip test for the rapid detection of organophosphorus pesticides with a thiophosphate group. Hybridoma 2010, 29, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Tu, X.M.; Fu, Z.F.; Wang, W.W.; Fu, S.F.; Zhu, C.Z.; Du, D.; Lin, Y.H. Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens. Bioelectron. 2018, 106, 43–49. [Google Scholar] [CrossRef]
- Tang, Y.; Zhai, Y.F.; Xiang, J.J.; Wang, H.; Liu, B.; Guo, C.W. Colloidal gold probe-based immunochromatographic assay for the rapid detection of lead ions in water samples. Environ. Pollut. 2010, 158, 2074–2077. [Google Scholar] [CrossRef]
- Di Nardo, F.; Anfossi, L.; Ozella, L.; Saccani, A.; Giovannoli, C.; Spanoa, G.; Baggiani, C. Validation of a qualitative immunochromatographic test for the noninvasive assessment of stress in dogs. J. Chromatogr. B 2016, 1028, 192–198. [Google Scholar] [CrossRef]
- Ji, Y.W.; Ren, M.L.; Li, Y.P.; Huang, Z.B.; Shu, M.; Yang, H.W.; Xiong, Y.H.; Xu, Y. Detection of aflatoxin B₁ with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers. Talanta 2015, 142, 206–212. [Google Scholar] [CrossRef]
Compound | Structure | IC50 (μg/L) | CR (%) |
---|---|---|---|
Chlorpyrifos–ethyl | 42.48 | 100.00 | |
Chlorpyrifos–methyl | 40.89 | 103.89 | |
Parathion | >1000 | 1.62 | |
Fensulfothion | >1000 | 0.74 | |
Carbofuran | >1000 | <0.50 | |
Triazophos | >1000 | <0.50 | |
Parathion-methyl | >1000 | <0.50 | |
Coumaphos | >1000 | <0.50 | |
Quintiofos | >1000 | <0.50 | |
3,5,6-Trichloro-2-pyridinol | >1000 | <0.50 |
Detection Compound | Signal Tracer | Sample | LOD (mg/L) | Reference |
---|---|---|---|---|
CPSE | Colloidal gold | - | 4 | [37] |
CPSM | Colloidal gold | Water | 0.6 | [14] |
CPSE | Colloidal gold | Rice | 0.05 | [13] |
CPSE | g-C3N4/BiFeO3 nanocomposites | Water | 0.000033 | [38] |
CPSE, CPSM | Fluorescence microsphere | Chinese cabbage, lettuce, pear, apple | 0.015 | This work |
CPS | Sample | Spiked Level (mg/kg) | FICA | GC-MS/MS | ||||
---|---|---|---|---|---|---|---|---|
Measured (mg/kg) (M ± SD b) | Recovery c (%) | CV d (%) | Measured (mg/kg) (M ± SD) | Recovery (%) | CV (%) | |||
CPSE | Chinese cabbage | 0.1 | 0.11 ± 0.01 | 110.0 | 9.1 | 0.08 ± 0.00 | 80.0 | 0.0 |
0.5 | 0.43 ± 0.05 | 86.0 | 11.6 | 0.40 ± 0.00 | 80.0 | 0.0 | ||
2.5 | 2.05 ± 0.06 | 82.0 | 2.9 | 2.25 ± 0.01 | 90.0 | 0.4 | ||
Lettuce | 0.1 | 0.11 ± 0.01 | 110.0 | 9.1 | 0.09 ± 0.00 | 90.0 | 0.0 | |
0.5 | 0.50 ± 0.01 | 100.0 | 2.0 | 0.40 ± 0.00 | 80.0 | 0.0 | ||
2.5 | 2.29 ± 0.04 | 91.6 | 1.7 | 2.26 ± 0.01 | 90.4 | 0.4 | ||
Pear | 1.0 | 1.04 ± 0.20 | 104.0 | 19.2 | 0.85 ± 0.01 | 85.0 | 1.2 | |
5.0 | 5.10 ± 0.10 | 102.0 | 2.0 | 4.60 ± 0.03 | 92.0 | 0.7 | ||
25.0 | 25.26 ± 0.14 | 101.0 | 0.6 | 22.68 ± 0.02 | 90.7 | 0.1 | ||
Apple | 1.0 | 1.05 ± 0.03 | 105.0 | 2.9 | 0.88 ± 0.00 | 88.0 | 0.0 | |
5.0 | 5.18 ± 0.06 | 103.6 | 1.2 | 4.62 ± 0.01 | 92.4 | 0.2 | ||
25.0 | 26.84 ± 0.68 | 107.4 | 2.5 | 22.65 ± 0.01 | 90.6 | 0.0 | ||
CPSM | Chinese cabbage | 0.1 | 0.10 ± 0.01 | 100.0 | 10.0 | 0.09 ± 0.00 | 90.0 | 0.0 |
0.5 | 0.54 ± 0.01 | 108.0 | 1.9 | 0.46 ± 0.02 | 92.0 | 4.3 | ||
2.5 | 2.38 ± 0.10 | 95.2 | 4.2 | 2.40 ± 0.08 | 96.0 | 3.3 | ||
Lettuce | 0.1 | 0.11 ± 0.01 | 110.0 | 9.0 | 0.10 ± 0.01 | 100.0 | 10.0 | |
0.5 | 0.45 ± 0.01 | 90.0 | 2.2 | 0.41 ± 0.01 | 82.0 | 2.4 | ||
2.5 | 2.43 ± 0.05 | 97.2 | 2.1 | 2.48 ± 0.02 | 99.2 | 0.8 | ||
Pear | 1.0 | 0.94 ± 0.06 | 94.0 | 6.4 | 0.91 ± 0.00 | 91.0 | 0.0 | |
5.0 | 4.61 ± 0.17 | 92.2 | 3.7 | 5.18 ± 0.07 | 103.6 | 1.4 | ||
25.0 | 24.13 ± 0.70 | 96.5 | 2.9 | 25.21 ± 0.32 | 100.8 | 1.3 | ||
Apple | 1.0 | 1.02 ± 0.02 | 102.0 | 2.0 | 0.91 ± 0.00 | 91.0 | 0.0 | |
5.0 | 4.70 ± 0.07 | 94.0 | 1.5 | 5.32 ± 0.06 | 106.4 | 1.1 | ||
25.0 | 24.50 ± 0.66 | 98.0 | 2.7 | 25.44 ± 0.22 | 101.8 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.-H.; Liu, J.; Li, B.; Wang, J.-K.; Zeng, X.; Chen, Z.-J.; Hongsibsong, S.; Huang, W.; Lei, H.-T.; Sun, Y.-M.; et al. The Simultaneous Determination of Chlorpyrifos–Ethyl and –Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay. Biosensors 2022, 12, 1006. https://doi.org/10.3390/bios12111006
Xu Z-H, Liu J, Li B, Wang J-K, Zeng X, Chen Z-J, Hongsibsong S, Huang W, Lei H-T, Sun Y-M, et al. The Simultaneous Determination of Chlorpyrifos–Ethyl and –Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay. Biosensors. 2022; 12(11):1006. https://doi.org/10.3390/bios12111006
Chicago/Turabian StyleXu, Zi-Hong, Jia Liu, Bin Li, Jun-Kai Wang, Xi Zeng, Zi-Jian Chen, Surat Hongsibsong, Wei Huang, Hong-Tao Lei, Yuan-Ming Sun, and et al. 2022. "The Simultaneous Determination of Chlorpyrifos–Ethyl and –Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay" Biosensors 12, no. 11: 1006. https://doi.org/10.3390/bios12111006
APA StyleXu, Z. -H., Liu, J., Li, B., Wang, J. -K., Zeng, X., Chen, Z. -J., Hongsibsong, S., Huang, W., Lei, H. -T., Sun, Y. -M., & Xu, Z. -L. (2022). The Simultaneous Determination of Chlorpyrifos–Ethyl and –Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay. Biosensors, 12(11), 1006. https://doi.org/10.3390/bios12111006