Spectroelectrochemical Enzyme Sensor System for Acetaldehyde Detection in Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentation
2.2. Methods
2.2.1. Electrochemical and Spectroelectrochemical Detection of Acetaldehyde
2.2.2. Preparation of Wine Samples
2.2.3. Determination of Enzyme Activities and Michaelis Constants
3. Results
3.1. Electrochemical Detection of Acetaldehyde
3.2. Spectroelectrochemical Detection of Acetaldehyde
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Noguer, T.; Marty, J.L. Reagentless Sensors for Acetaldehyde. Anal. Lett. 1997, 30, 1069–1080. [Google Scholar] [CrossRef]
- Avramescu, A.; Noguer, T.; Avramescu, M.; Marty, J.L. Screen-Printed Biosensors for the Control of Wine Quality Based on Lactate and Acetaldehyde Determination. Anal. Chim. Acta 2002, 458, 203–213. [Google Scholar] [CrossRef]
- Arias-Pérez, I.; Sáenz-Navajas, M.P.; De-la-Fuente-Blanco, A.; Ferreira, V.; Escudero, A. Insights on the Role of Acetaldehyde and Other Aldehydes in the Odour and Tactile Nasal Perception of Red Wine. Food Chem. 2021, 361, 130081. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Pilone, G.J. An Overview of Formation and Roles of Acetaldehyde in Winemaking with Emphasis on Microbiological Implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Jeong, H.S.; Chung, H.; Song, S.H.; Kim, C.I.; Lee, J.G.; Kim, Y.S. Validation and Determination of the Contents of Acetaldehyde and Formaldehyde in Foods. Toxicol. Res. 2015, 31, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, A.E.; Wagner, E.C. Estimation of Aldehydes by the Bisulfite Method: An Improved Procedure. Ind. Eng. Chem.-Anal. Ed. 1934, 6, 433–436. [Google Scholar] [CrossRef]
- Li, Z.; Fang, M.; LaGasse, M.K.; Askim, J.R.; Suslick, K.S. Colorimetric Recognition of Aldehydes and Ketones. Angew. Chemie 2017, 129, 9992–9995. [Google Scholar] [CrossRef]
- Miyake, T.; Shibamoto, T. Quantitative Analysis of Acetaldehyde in Foods and Beverages. J. Agric. Food Chem. 1993, 41, 1968–1970. [Google Scholar] [CrossRef]
- Guan, X.; Rubin, E.; Anni, H. An Optimized Method for the Measurement of Acetaldehyde by High-Performance Liquid Chromatography. Alcohol. Clin. Exp. Res. 2012, 36, 398–405. [Google Scholar] [CrossRef]
- Noguer, T.; Marty, J.L. An Amperometric Bienzyme Electrode for Acetaldehyde Detection. Enzyme Microb. Technol. 1995, 17, 453–456. [Google Scholar] [CrossRef]
- Marty, J.L.; Mionetto, N.; Noguer, T.; Ortega, F.; Roux, C. Enzyme Sensors for the Detection of Pesticides. Biosens. Bioelectron. 1993, 8, 273–280. [Google Scholar] [CrossRef]
- Noguer, T.; Gradinaru, A.; Ciucu, A.; Marty, J.L. A New Disposable Biosensor for the Accurate and Sensitive Detection of Ethylenebis(Dithiocarbamate) Fungicides. Anal. Lett. 1999, 32, 1723–1738. [Google Scholar] [CrossRef]
- Noguer, T.; Marty, J.L. High Sensitive Bienzymic Sensor for the Detection of Dithiocarbamate Fungicides. Anal. Chim. Acta 1997, 347, 63–70. [Google Scholar] [CrossRef]
- Navarro, C.; Begoña, M.; García, G.; Hernández, D.; Aranzazu, M.; Colina, A.; Fanjul-Bolado, P. Electrochemistry Aqueous UV–VIS Spectroelectrochemical Study of the Voltammetric Reduction of Graphene Oxide on Screen-Printed Carbon Electrodes. Electrochem. Commun. 2016, 64, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Garoz-Ruiz, J.; Perales-Rondon, J.V.; Heras, A.; Colina, A. Spectroelectrochemical Sensing: Current Trends and Challenges. Electroanalysis 2019, 31, 1254–1278. [Google Scholar] [CrossRef]
- Hernandez, S.; Perales-Rondon, J.V.; Arnaiz, A.; Perez-Estebanez, M.; Gomez, E.; Colina, A.; Heras, A. Determination of Nicotinamide in a Multivitamin Complex by Electrochemical-Surface Enhanced Raman Spectroscopy. J. Electroanal. Chem. 2020, 879, 114743. [Google Scholar] [CrossRef]
- González-Diéguez, N.; Colina, A.; López-Palacios, J.; Heras, A. Spectroelectrochemistry at Screen-Printed Electrodes: Determination of Dopamine. Anal. Chem. 2012, 84, 9146–9153. [Google Scholar] [CrossRef]
- Hernandez, S.; Perales-Rondon, J.V.; Heras, A.; Colina, A. Determination of Uric Acid in Synthetic Urine by Using Electrochemical Surface Oxidation Enhanced Raman Scattering. Anal. Chim. Acta 2019, 1085, 61–67. [Google Scholar] [CrossRef]
- El-Said, W.A.; Kim, T.H.; Chung, Y.H.; Choi, J.W. Fabrication of New Single Cell Chip to Monitor Intracellular and Extracellular Redox State Based on Spectroelectrochemical Method. Biomaterials 2015, 40, 80–87. [Google Scholar] [CrossRef]
- Lynk, T.P.; Clarke, O.J.R.; Kesavan, N.; Brosseau, C.L. Development of a Sustainable Plasmon-Enhanced Spectroelectrochemical Sensor Using Avocado Pit (Persea americana) Extract. Sens. Actuators B Chem. 2018, 257, 270–277. [Google Scholar] [CrossRef]
- Cannan, S.; Douglas Macklam, I.; Unwin, P.R. Three-Dimensional Imaging of Proton Gradients at Microelectrode Surfaces Using Confocal Laser Scanning Microscopy. Electrochem. Commun. 2002, 4, 886–892. [Google Scholar] [CrossRef]
- Imai, K.; Okazaki, T.; Hata, N.; Taguchi, S.; Sugawara, K.; Kuramitz, H. Simultaneous Multiselective Spectroelectrochemical Fiber-Optic Sensor: Demonstration of the Concept Using Methylene Blue and Ferrocyanide. Anal. Chem. 2015, 87, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Schiffrin, D.J.; Luff, B.J.; Wilkinson, J.S. Optoelectrochemical Sensor for Lead Based on Electrochemically Assisted Solvent Extraction. Sens. Actuators B Chem. 2000, 63, 115–121. [Google Scholar] [CrossRef]
- Ibáñez, D.; Izquierdo-Bote, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Development of a New Screen-Printed Transducer for the Electrochemical Detection of Thiram. Chemosensors 2021, 9, 303. [Google Scholar] [CrossRef]
- Bilko, M.; Gunko, S.; Babych, I.; Naumenko, O.; Mukoid, R.; Ischenko, M.; Doboniy, I.; Danylenko, S.; Bovkun, A.; Stotska, O. Investigation of the Appearance and Elimination of Pinking Coloration in White Wines. East.-Eur. J. Enterp. Technol. 2022, 1, 56–62. [Google Scholar] [CrossRef]
- Nel, A.P.; du Toit, W.J.; van Jaarsveld, F.P. Pinking in White Wines—A Review. S. Afr. J. Enol. Vitic. 2020, 41, 151–157. [Google Scholar] [CrossRef]
- Gil, M.; Avila-Salas, F.; Santos, L.S.; Iturmendi, N.; Moine, V.; Cheynier, V.; Saucier, C. Rosé Wine Fining Using Polyvinylpolypyrrolidone: Colorimetry, Targeted Polyphenomics, and Molecular Dynamics Simulations. J. Agric. Food Chem. 2017, 65, 10591–10597. [Google Scholar] [CrossRef]
- Shin, K.S.; Lee, J.H. Acetaldehyde Contents and Quality Characteristics of Commercial Alcoholic Beverages. Food Sci. Biotechnol. 2019, 28, 1027–1036. [Google Scholar] [CrossRef]
- Grassin, C.; Dubourdieu, D. Quantitative Determination of Botrytis Laccase in Musts and Wines by the Syringaldazine Test. J. Sci. Food Agric. 1989, 48, 369–376. [Google Scholar] [CrossRef]
- Schroll, C.A.; Chatterjee, S.; Heineman, W.R.; Bryan, S.A. Semi-Infinite Linear Diffusion Spectroelectrochemistry on an Aqueous Micro-Drop. Anal. Chem. 2011, 83, 4214–4219. [Google Scholar] [CrossRef]
- Escudero, A.; Asensio, E.; Cacho, J.; Ferreira, V. Sensory and Chemical Changes of Young White Wines Stored under Oxygen. An Assessment of the Role Played by Aldehydes and Some Other Important Odorants. Food Chem. 2002, 77, 325–331. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology: The Microbiology of Wine and Vinifications; John Wiley & Sons, Ltd.: Chichester, UK, 2006; Volume 1, ISBN 0470010347. [Google Scholar]
Electrochemical Technique | Potential | Time | ALDH | DP | NAD+ | K3[Fe(CN)6] | BSA | AA Linear Range |
---|---|---|---|---|---|---|---|---|
Chronoamperometry | +0.40 V | 60 s | 0.07 U/mL | 0.07 U/mL | 1 mM | 1 mM | 0.1% | 1 × 10−5–5 × 10−4 M |
Chronoamperometry | +0.40 V | 60 s | 0.14 U/mL | 0.14 U/mL | 1 mM | 1 mM | 0.1% | 5 × 10−6–2.5 × 10−4 M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Spectroelectrochemical Enzyme Sensor System for Acetaldehyde Detection in Wine. Biosensors 2022, 12, 1032. https://doi.org/10.3390/bios12111032
Ibáñez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Spectroelectrochemical Enzyme Sensor System for Acetaldehyde Detection in Wine. Biosensors. 2022; 12(11):1032. https://doi.org/10.3390/bios12111032
Chicago/Turabian StyleIbáñez, David, María Begoña González-García, David Hernández-Santos, and Pablo Fanjul-Bolado. 2022. "Spectroelectrochemical Enzyme Sensor System for Acetaldehyde Detection in Wine" Biosensors 12, no. 11: 1032. https://doi.org/10.3390/bios12111032
APA StyleIbáñez, D., González-García, M. B., Hernández-Santos, D., & Fanjul-Bolado, P. (2022). Spectroelectrochemical Enzyme Sensor System for Acetaldehyde Detection in Wine. Biosensors, 12(11), 1032. https://doi.org/10.3390/bios12111032