A Rapid, Fluorescence Switch-On Biosensor for Early Diagnosis of Sorghum Mosaic Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. ELISA Procedure
2.3. Preparation of TGA-Capped CdTe QDs
2.4. Synthesis of Water-Soluble C QDs
2.5. Preparation of the CdTe QDs-Ab Conjugation
2.6. Preparation of The C QDs-CP Conjugation
2.7. Determination of Quenching Efficiency
2.8. Assessment of Nanobiosensors
3. Results
3.1. Morphological and Spectral Characterizations of CdTe QDs and AuNP
3.2. Structural Characterization of Quantum Dots
3.3. Characterization of Bioconjugation
3.4. Biosensor Fabrication
3.5. Purified Sample Detection
3.6. Feasibility Verification
3.7. Quenching Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.F.; Shen, K.; Huang, Y.K.; Wang, X.Y.; Zhang, R.Y.; Shan, H.L.; Yin, J.; Luo, Z.M. Evaluation of resistance to Sorghum mosaic virus (SrMV) in 49 new elite sugarcane varieties/clones in China. Crop Prot. 2014, 60, 62–65. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Pennerman, K.K.; Wang, H.; Yin, G. Characterization of a Sorghum mosaic virus (SrMV) isolate in China. Saudi J. Biol. Sci. 2016, 23, 237–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.F.; Shan, H.L.; Cang, X.Y.; Lu, X.; Zhang, R.Y.; Wang, X.Y.; Yin, J.; Luo, Z.M.; Huang, Y.K. Identification and evaluation of resistance to Sugarcane Streak Mosaic Virus (SCSMV) and Sorghum Mosaic Virus (SrMV) in excellent sugarcane innovation germplasms in China. Sugar Tech. 2018, 21, 481–485. [Google Scholar] [CrossRef]
- Li, W.F.; Shan, H.L.; Zhang, R.Y.; Wang, X.Y.; Yang, K.; Luo, Z.M.; Yin, J.; Cang, X.Y.; Li, J.; Huang, Y.K. Identification of resistance to Sugarcane streak mosaic virus (SCSMV) and Sorghum mosaic virus (SrMV) in new elite sugarcane varieties/clones in China. Crop Prot. 2018, 110, 77–82. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, W.F.; Huang, Y.K.; Zhang, R.Y.; Shan, H.L.; Yin, J.; Luo, Z.M. Molecular detection and phylogenetic analysis of viruses causing mosaic symptoms in new sugarcane varieties in China. Eur. J. Plant Pathol. 2017, 148, 931–940. [Google Scholar] [CrossRef]
- Ju, H.J.; Jeong, J.J.; Noh, J.J. A review of detection methods for the plant viruses. Res. Plant Dis. 2014, 20, 173–181. [Google Scholar] [CrossRef]
- Shojaei, T.R.; Tabatabaei, M.; Shawky, S.; Salleh, M.A.M.; Bald, D. A review on emerging diagnostic assay for viral detection: The case of avian influenza virus. Mol. Biol. Rep. 2015, 42, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Khater, M.; de la Escosura-Muniz, A.; Merkoci, A. Biosensors for plant pathogen detection. Biosens. Bioelectron. 2017, 93, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Sabzehparvar, F.; Cherati, T.R.; Mohsenifar, A.; Shojaei, T.R.; Tabatabaei, M. Immobilization of gold nanoparticles with rhodamine to enhance the fluorescence resonance energy transfer between quantum dots and rhodamine; new method for downstream sensing of infectious bursal disease virus. Spectrochim. Acta A 2019, 212, 173–179. [Google Scholar] [CrossRef]
- Sun, B.; Dong, J.; Cui, L.; Feng, T.T.; Zhu, J.J.; Liu, X.H.; Ai, S.Y. A dual signal-on photoelectrochemical immunosensor for sensitively detecting target avian viruses based on AuNPs/g-C3N4 coupling with CdTe quantum dots and in situ enzymatic generation of electron donor. Biosens. Bioelectron. 2019, 124–125, 1–7. [Google Scholar] [CrossRef]
- Cheng, S.; Liao, L.S.; Sun, J.; Ye, Y.Y.; Yang, J.X.; Cao, C.F.; Lv, J.Q.; Fang, L.R.; Wu, F.; Lin, Y.X.; et al. A new immunoassay of serum antibodies against Peste des petits ruminants virus using quantum dots and a lateral-flow test strip. Anal. Bioanal. Chem. 2017, 409, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zheng, Z.H.; Zhang, X.-E.; Wang, H.Z. Quantum dot-fluorescence in situ hybridisation for Ectromelia virus detection based on biotin-streptavidin interactions. Talanta 2016, 158, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Fang, J.; Guo, Y.C.; Tao, Y.; Han, X.L.; Hua, Y.X.; Wang, J.J.; Li, L.Y.; Jian, Y.L.; Xie, G. A target-triggered biosensing platform for detection of HBV DNA based on DNA walker and CHA. Anal. Biochem. 2018, 554, 16–22. [Google Scholar] [CrossRef]
- Shen, W.; Gao, Z. Quantum dots and duplex-specific nuclease enabled ultrasensitive detection and serotyping of Dengue viruses in one step in a single tube. Biosens. Bioelectron. 2015, 65, 327–332. [Google Scholar] [CrossRef]
- Chandan, H.R.; Schiffmanb, J.D.; Balakrishna, R.G. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens. Actuators B 2018, 258, 1191–1214. [Google Scholar] [CrossRef]
- Wang, Y.; Howes, P.D.; Kim, E.; Spicer, C.D.; Thomas, M.R.; Lin, Y.; Crowder, S.W.; Pence, I.J.; Stevens, M.M. Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot-DNA Conjugates. ACS Appl. Mater. Interfaces 2018, 10, 28290–28300. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.C.; Du, L.P.; Su, X.G. Detection of melamine based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine B. Food Chem. 2013, 141, 4060–4065. [Google Scholar] [CrossRef]
- Freeman, R.; Liu, X.Q.; Willner, I. Amplified multiplexed analysis of DNA by the exonuclease III-catalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots. Nano Lett. 2011, 11, 4456–4461. [Google Scholar] [CrossRef]
- Nasrin, F.; Chowdhury, A.D.; Takemura, K.; Kozaki, I.; Honda, H.; Adegoke, O.; Park, E.Y. Fluorometric virus detection platform using quantum dots-gold nanocomposites optimizing the linker length variation. Anal. Chim. Acta 2020, 1109, 148–157. [Google Scholar] [CrossRef]
- Wang, L.; Bi, Y.D.; Hou, J.; Li, H.Y.; Xu, Y.; Wang, B.; Ding, H.; Ding, L. Facile, green and clean one-step synthesis of carbon dots from wool: Application as a sensor for glyphosate detection based on the inner filter effect. Talanta 2016, 160, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.P.; Pan, Y.; Zhang, H.; Zhang, Z.M.; Li, M.J.; Yi, C.Q.; Yang, M.S. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens. Bioelectron. 2014, 56, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Borgheia, Y.S.; Hosseinia, M.; Ganjali, M.R. A label-free luminescent light switching system for miRNA detection based on two color quantum dots. J. Photochem. Photobiol. A 2020, 391, 112351. [Google Scholar] [CrossRef]
- Tao, H.L.; Liao, X.F.; Sun, C.; Xie, X.L.; Zhong, F.X.; Yi, Z.S.; Huang, Y.P. A carbon dots-CdTe quantum dots fluorescence resonance energy transfer system for the analysis of ultra-trace chlortoluron in water. Spectrochim. Acta A 2015, 136, 1328–1334. [Google Scholar] [CrossRef]
- Ahmad, K.; Gogoi, S.K.; Begum, R.; Sk, M.P.; Paul, A.; Chattopadhyay, A. An Interactive quantum dot and carbon dot conjugate for pH-Sensitive and ratiometric Cu2+ sensing. ChemPhysChem 2017, 18, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, Y.F.; Ali, N.; Lv, W.Z.; Shen, Y.N.; Chen, B.S.; Wen, R.H. Comparison of IC-RT-PCR, Dot-ELISA and Indirect-ELISA for the detection of Sorghum mosaic virus in field-grown sugarcane plants. Sugar Tech. 2019, 22, 122–129. [Google Scholar] [CrossRef]
- Shanehsaz, M.; Mohsenifar, A.; Hasannia, S.; Pirooznia, N.; Samaei, Y.; Shamsipur, M. Detection of Helicobacter pylori with a nanobiosensor based on fluorescence resonance energy transfer using CdTe quantum dots. Microchim. Acta 2012, 180, 195–202. [Google Scholar] [CrossRef]
- Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.G.; Li, D.; Tan, H.Q.; Zhao, Z.; Xie, Z.G.; Sun, Z.C. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272–12277. [Google Scholar] [CrossRef]
- Li, J.; Mei, F.; Li, W.Y.; He, X.W.; Zhang, Y.K. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II). Spectrochim. Acta A 2008, 70, 811–817. [Google Scholar] [CrossRef]
- Liang, S.S.; Qi, L.; Zhang, R.L.; Jin, M.; Zhang, Z.Q. Ratiometric fluorescence biosensor based on CdTe quantum and carbon dots for double strand DNA detection. Sens. Actuators B 2017, 244, 585–590. [Google Scholar] [CrossRef]
- Shojaei, T.R.; Salleh, M.A.; Sijam, K.; Rahim, R.A.; Mohsenifar, A.; Safarnejad, R.; Tabatabaei, M. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim. Acta A 2016, 169, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Ma, J.J.; Li, H.; Zhou, J.R.; Zhang, H.; Fu, L.L. A sensitive immunosensor based on FRET between gold nanoparticles and InP/ZnS quantum dots for arginine kinase detection. Food Chem. 2021, 354, 129536. [Google Scholar] [CrossRef] [PubMed]
- Zekavati, R.; Safi, S.; Hashemi, S.J.; Rahmani-Cherati, T.; Tabatabaei, M.; Mohsenifar, A.; Bayat, M. Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchim. Acta 2013, 180, 1217–1223. [Google Scholar] [CrossRef]
- Fan, L.J.; Zhang, Y.; Murphy, C.B.; Angell, S.E.; Parker, M.F.L.; Flynn, B.R.; Jones, W.E. Fluorescent conjugated polymer molecular wire chemosensors for transition metal ion recognition and signaling. Coord. Chem. Rev. 2009, 253, 410–422. [Google Scholar] [CrossRef]
- Adegoke, O.; Nyokong, T. Probing the sensitive and selective luminescent detection of peroxynitrite using thiol-capped CdTe and CdTe@ZnS quantum dots. J. Lumin. 2013, 134, 448–455. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, S.; Kokot, S. Spectrometric study of the interaction between Alpinetin and bovine serum albumin using chemometrics approaches. Anal. Chim. Acta 2010, 663, 139–146. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Liu, F.T.; Yu, S.H.; Gao, Y.; Zhang, J.P. The determination of nitrite by a graphene quantum dot fluorescence quenching method without sample pretreatment. Luminescence 2018, 33, 289–296. [Google Scholar] [CrossRef]
- Bakhori, N.M.; Yusof, N.A.; Abdullah, A.H.; Hussein, M.Z. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense. Biosensors 2013, 3, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.Y.; Chan, C.Y.; Pang, Y.T.; Ye, W.W.; Tian, F.; Lyu, J.; Zhang, Y.; Yang, M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens. Bioelectron. 2015, 67, 595–600. [Google Scholar] [CrossRef]
Sample | Added (μg) | Measured (μg) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|
1 | 1.80 | 1.68 ± 0.22 | 93 | 13.35 |
2 | 2.88 | 2.70 ± 0.33 | 94 | 12.52 |
3 | 3.96 | 4.08 ± 0.41 | 103 | 10.26 |
4 | 5.04 | 4.88 ± 0.38 | 97 | 7.89 |
5 | 6.12 | 5.87 ± 0.51 | 96 | 8.72 |
Sample | ELISA/ (O.D. Ratio) | Developed Sensor/ (a.u. Ratio) | Sample | ELISA/ (O.D. Ratio) | Developed Sensor/ (a.u. Ratio) |
---|---|---|---|---|---|
1 | 5.27 | 1.89 | 16 | 1.03 | 1.00 |
2 | 5.67 | 2.12 | 17 | 0.87 | 0.96 |
3 | 3.12 | 1.86 | 18 | 0.88 | 0.96 |
4 | 2.59 | 1.82 | 19 | 0.89 | 0.94 |
5 | 4.81 | 1.92 | 20 | 0.88 | 0.90 |
6 | 5.21 | 1.80 | 21 | 0.88 | 0.86 |
7 | 2.11 | 2.24 | 22 | 0.89 | 0.78 |
8 | 6.26 | 2.23 | 23 | 0.94 | 0.78 |
9 | 4.89 | 1.95 | 24 | 0.90 | 0.80 |
10 | 4.79 | 2.02 | 25 | 0.85 | 0.76 |
11 | 3.86 | 1.88 | 26 | 0.89 | 0.78 |
12 | 3.82 | 1.82 | 27 | 0.91 | 0.76 |
13 | 0.92 | 0.71 | 28 | 0.88 | 0.75 |
14 | 0.89 | 0.65 | 29 | 1.01 | 0.71 |
15 | 0.88 | 0.98 | 30 | 0.92 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Yang, C.; Xiao, D.; Lin, Y.; Wen, R.; Chen, B.; He, X. A Rapid, Fluorescence Switch-On Biosensor for Early Diagnosis of Sorghum Mosaic Virus. Biosensors 2022, 12, 1034. https://doi.org/10.3390/bios12111034
Han Z, Yang C, Xiao D, Lin Y, Wen R, Chen B, He X. A Rapid, Fluorescence Switch-On Biosensor for Early Diagnosis of Sorghum Mosaic Virus. Biosensors. 2022; 12(11):1034. https://doi.org/10.3390/bios12111034
Chicago/Turabian StyleHan, Zhenlong, Congyuan Yang, Dan Xiao, Yinfu Lin, Ronghui Wen, Baoshan Chen, and Xipu He. 2022. "A Rapid, Fluorescence Switch-On Biosensor for Early Diagnosis of Sorghum Mosaic Virus" Biosensors 12, no. 11: 1034. https://doi.org/10.3390/bios12111034
APA StyleHan, Z., Yang, C., Xiao, D., Lin, Y., Wen, R., Chen, B., & He, X. (2022). A Rapid, Fluorescence Switch-On Biosensor for Early Diagnosis of Sorghum Mosaic Virus. Biosensors, 12(11), 1034. https://doi.org/10.3390/bios12111034