Hierarchical Ti-MOF Microflowers for Synchronous Removal and Fluorescent Detection of Aluminum Ions
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of Hierarchical Ti-MOF Microflowers
2.2. Fluorescence Determination of Aluminium Ion
2.3. Adsorption of Aluminum Ion
3. Results and Discussion
3.1. Removal of Al(III) by Ti-MOF Microflowers
3.2. Possible Mechanism for Selective Determination of Al(III) Ions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cronan, C.S.; Walker, W.J.; Bloom, P.R. Predicting aqueous aluminium concentrations in natural waters. Nature 1986, 324, 140–143. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 1st ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Walton, J.R. Aluminum in hippocampal neurons from humans with Alzheimer’s disease. NeuroToxicology 2006, 27, 385–394. [Google Scholar] [CrossRef] [PubMed]
- LLabrecque, C.; Larivière, D. Quantification of rare earth elements using cloud point extraction with diglycolamide and ICP-MS for environmental analysis. Anal. Methods 2014, 6, 9291–9298. [Google Scholar] [CrossRef]
- Fang, B.-Y.; Li, C.; Song, Y.-Y.; Tan, F.; Cao, Y.-C.; Zhao, Y.-D. Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells. Biosens. Bioelectron. 2018, 100, 41–48. [Google Scholar] [CrossRef]
- Sheoran, A.; Sheoran, V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Eng. 2006, 19, 105–116. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, W.; Xu, Y.; Qian, X. A small molecular fluorescent sensor functionalized silica microsphere for detection and removal of mercury, cadmium, and lead ions in aqueous solutions. Sensors Actuators B Chem. 2015, 220, 762–771. [Google Scholar] [CrossRef] [Green Version]
- Septhum, C.; Rattanaphani, S.; Bremner, J. An adsorption study of Al(III) ions onto chitosan. J. Hazard. Mater. 2007, 148, 185–191. [Google Scholar] [CrossRef]
- He, C.; Zhu, W.; Xu, Y.; Chen, T.; Qian, X. Trace mercury (II) detection and separation in serum and water samples using a reusable bifunctional fluorescent sensor. Anal. Chim. Acta 2009, 651, 227–233. [Google Scholar] [CrossRef]
- Rapti, S.; Sarma, D.; Diamantis, S.A.; Skliri, E.; Armatas, G.S.; Tsipis, A.C.; Hassan, Y.S.; Alkordi, M.; Malliakas, C.D.; Kanatzidis, M.G.; et al. All in one porous material: Exceptional sorption and selective sensing of hexavalent chromium by using a Zr4+ MOF. J. Mater. Chem. A 2017, 5, 14707–14719. [Google Scholar] [CrossRef]
- Xie, D.; Ma, Y.; Gu, Y.; Zhou, H.; Zhang, H.; Wang, G.; Zhang, Y.; Zhao, H. Bifunctional NH2-MIL-88(Fe) metal–organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. J. Mater. Chem. A 2017, 5, 23794–23804. [Google Scholar] [CrossRef]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Fu, C.; Yu, J.; Yang, Y.; Shi, P. A Novel 2D Metal-Organic Framework Probe: Highly Sensitive and Visual Fluorescent Sensor for Al3+, Cr3+, Fe3+ Ions. N. J. Chem. 2022, 46, 18911–18916. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, S.; Jiang, W.-J.; Cai, Z.-H.; Li, D.-L.; Liu, Y.-L.; Chen, Z.-Z. Recent Progress in Metal-Organic Framework Based Fluorescent Sensors for Hazardous Materials Detection. Molecules 2022, 27, 2226. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Wang, J.; Zhang, L.; Wang, S.; Yang, C.; Xie, L.; Liu, Z.; Ni, Y.; Xie, X.; Sun, J.; et al. Missing-linker engineering of Eu (III)-doped UiO-MOF for enhanced detection of heavy metal ions. Chem. Eng. J. 2022, 431, 134050. [Google Scholar] [CrossRef]
- Wu, L.; Yao, S.; Xu, H.; Zheng, T.; Liu, S.; Chen, J.; Li, N.; Wen, H. Highly selective and turn-on fluorescence probe with red shift emission for naked-eye detecting Al3+ and Ga3+ based on metal-organic framework. Chin. Chem. Lett. 2022, 33, 541–546. [Google Scholar] [CrossRef]
- Zhan, Z.; Jia, Y.; Li, D.; Zhang, X.; Hu, M. A water-stable terbium-MOF sensor for the selective, sensitive, and recyclable detection of Al3+ and CO32− ions. Dalton Trans. 2019, 48, 15255–15262. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, Y.; Jia, P.; Wang, Q.; Liu, Y.; Bu, T.; Zhang, M.; Bai, F.; Wang, L. Dual-emission Zr-MOF-based composite material as a fluorescence turn-on sensor for the ultrasensitive detection of Al3+. Inorg. Chem. 2020, 59, 18205–18213. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Zhao, S.; Sun, Z.; Hong, M.; Luo, J. Hierarchical metal-organic framework microflowers for effective CO2 transformation driven by visible light. J. Mater. Chem. A 2015, 3, 15764–15768. [Google Scholar] [CrossRef]
- Kim, T.K.; Lee, K.J.; Cheon, J.Y.; Lee, J.H.; Joo, S.H.; Moon, H.R. Nanoporous Metal Oxides with Tunable and Nanocrystalline Frameworks via Conversion of Metal–Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 8940–8946. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; He, S.; Zhang, J.; Xu, X.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 Nanosheet-Assembled Hollow Nanocubes for Multicomponent Catalytic Reactions. Angew. Chem. Int. Ed. 2014, 53, 12517–12521. [Google Scholar]
- Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X. Well-Defined Metal-Organic Framework Hollow Nanocages. Angew. Chem. Int. Ed. 2014, 53, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gao, J.; Qian, X.; Wang, J.; He, H.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900–10905. [Google Scholar] [CrossRef]
- Gao, J.; Miao, J.; Li, P.-Z.; Teng, W.Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. A p-type Ti(iv)-based metal-organic framework with visible-light photo-response. Chem. Commun. 2014, 50, 3786–3788. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.-C.; Yang, Z.-Y.; Li, Y.; Wang, B.-D.; Zhou, Q.-X. A simple structure fluorescent chemosensor for high selectivity and sensitivity of aluminum ions. Dye. Pigment. 2013, 97, 124–128. [Google Scholar] [CrossRef]
- Dhara, A.; Jana, A.; Guchhait, N.; Ghosh, P.; Kar, S.K. Rhodamine-based molecular clips for highly selective recognition of Al3+ ions: Synthesis, crystal structure and spectroscopic properties. New J. Chem. 2014, 38, 1627–1634. [Google Scholar] [CrossRef]
- Das, S.; Goswami, S.; Aich, K.; Ghoshal, K.; Quah, C.K.; Bhattacharyya, M.; Fun, H.-K. ESIPT and CHEF based highly sensitive and selective ratiometric sensor for Al3+ with imaging in human blood cells. New J. Chem. 2015, 39, 8582–8587. [Google Scholar] [CrossRef]
- Hao, J.-N.; Yan, B. Amino-decorated lanthanide(iii) organic extended frameworks for multi-color luminescence and fluorescence sensing. J. Mater. Chem. C 2014, 2, 6758–6764. [Google Scholar] [CrossRef]
- Bhamore, J.R.; Jha, S.; Singhal, R.K.; Park, T.J.; Kailasa, S.K. Facile green synthesis of carbon dots from Pyrus pyrifolia fruit for assaying of Al3+ ion via chelation enhanced fluorescence mechanism. J. Mol. Liq. 2018, 264, 9–16. [Google Scholar] [CrossRef]
- Firdaus, F.; Farhi, A.; Faraz, M.; Shakir, M. Benzidine based fluorescent probe for the sensitive detection of heavy metal ions via chelation enhanced fluorescence mechanism—A multiplexed sensing platform. J. Lumin. 2018, 199, 475–482. [Google Scholar] [CrossRef]
- Naksen, P.; Boonruang, S.; Yuenyong, N.; Lee, H.L.; Ramachandran, P.; Anutrasakda, W.; Amatatongchai, M.; Pencharee, S.; Jarujamrus, P. Sensitive detection of trace level Cd (II) triggered by chelation enhanced fluorescence (CHEF) “turn on”: Nitrogen-doped graphene quantum dots (N-GQDs) as fluorometric paper-based sensor. Talanta 2022, 242, 123305. [Google Scholar] [CrossRef]
- Zhou, T.-Y.; Lin, L.-P.; Rong, M.-C.; Jiang, Y.-Q.; Chen, X. Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal. Chem. 2013, 85, 9839–9844. [Google Scholar] [CrossRef] [PubMed]
- Ku, K.-S.; Muthukumar, P.; Angupillai, S.; Son, Y.-A. A new rhodamine 6G based chemosensor for trace level Al3+ and its thin film application in 100% aqueous medium. Sens. Actuators B Chem. 2016, 236, 184–191. [Google Scholar] [CrossRef]
- Wang, H.; He, F.; Yan, R.-J.; Wang, X.-Y.; Zhu, X.; Li, L.-D. Citrate-induced aggregation of conjugated polyelectrolytes for Al3+-ion-sensing assays. ACS Appl. Mater. Interfaces 2013, 5, 8254–8259. [Google Scholar] [CrossRef]
- Xu, L.; Han, S.; Hu, Y.; Dynes, J.; Zhang, L. Rhodamine B-based ordered mesoporous organosilicas for the selective detection and adsorption of Al (III). N. J. Chem. 2016, 40, 6752–6761. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, K.; Jiang, N.; Cui, D.; Yin, G.; Wang, J.; Wang, R. A highly selective turn-on fluorescent probe for Al (III) based on coumarin and its application in vivo. Analyst 2014, 139, 1980–1986. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Chen, Z.; Fu, X.; Yang, B.; Li, H.; Su, J.; Gu, w.; Liu, X. A highly selective and fast-response fluorescent probe based on Cd-MOF for the visual detection of Al3+ ion and quantitative detection of Fe3+ ion. J. Solid State Chem. 2018, 259, 67–72. [Google Scholar] [CrossRef]
- Lee, S.A.; You, G.; Choi, Y.; Jo, H.; Kin, A.; Noh, I.; Kin, S.; Kim, Y.; Kim, C. A new multifunctional Schiff base as a fluorescence sensor for Al3+ and a colorimetric sensor for CN- in aqueous media: An application to bioimaging. Dalton Trans. 2014, 43, 6650–6659. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, G.; Lee, T. New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS Appl. Mater. Interfaces 2015, 7, 15649–15657. [Google Scholar] [CrossRef]
- Liang, C.; Bu, W.; Li, C.; Men, G.; Deng, M.; Jiang, Y.; Sun, H.; Jiang, S. A highly selective fluorescent sensor for Al3+ and the use of the resulting complex as a secondary sensor for PPi in aqueous media: Its applicability in live cell imaging. Dalton Trans. 2015, 44, 11352–11359. [Google Scholar] [CrossRef]
- Chen, W.; Meng, X.; Zhuang, G.; Wang, Z.; Kurmoo, M.; Zhao, Q.; Wang, X.; Shan, B.; Tung, C.; Sun, D. A superior fluorescent sensor for Al3+ and UO22+ based on a Co (ii) metal–organic framework with exposed pyrimidyl Lewis base sites. J. Mater. Chem. A 2017, 5, 13079–13085. [Google Scholar] [CrossRef]
- Mi, Y.; Cao, Z.; Chen, Y.; Long, S.; Xie, Q.; Liang, D.; Zhu, W.; Xiang, J. A reversible switch as highly selective sequential chemosensor for Al3+ cation followed by F− anion. Sens. Actuators B Chem. 2014, 192, 164–172. [Google Scholar] [CrossRef]
- Hu, X.; Mao, X.; Zhang, X.; Huang, Y. One-step synthesis of orange fluorescent copper nanoclusters for sensitive and selective sensing of Al3+ ions in food samples. Sens. Actuators B Chem. 2017, 247, 312–318. [Google Scholar] [CrossRef]
- Mu, X.; Qi, L.; Qiao, J.; Ma, H. One-pot synthesis of tyrosine-stabilized fluorescent gold nanoclusters and their application as turn-on sensors for Al3+ ions and turn-off sensors for Fe3+ ions. Anal. Methods 2014, 6, 6445–6451. [Google Scholar] [CrossRef]
- Tassist, A.; Lounici, H.; Abdi, N.; Mameri, N. Equilibrium, kinetic and thermodynamic studies on aluminum biosorption by a mycelial biomass (Streptomyces rimosus). Journal of Hazardous Materials 2010, 183, 35–43. [Google Scholar] [CrossRef]
- Guan, X.; Yan, S.; Xu, Z.; Fan, H. Gallic acid-conjugated iron oxide nanocomposite: An efficient, separable, and reusable adsorbent for remediation of Al(III)-contaminated tannery wastewater. J. Environ. Chem. Eng. 2017, 5, 479–487. [Google Scholar] [CrossRef]
- Lodeiro, P.; Gudina, A.; Herrero, L.; Herrero, R.; Manuel, E. Aluminium removal from wastewater by refused beach cast seaweed. Equilibrium and dynamic studies. J. Hazard. Mater. 2010, 178, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Al-Muhtaseb, S.A.; El-Naas, M.H.; Abdallah, S. Removal of aluminum from aqueous solutions by adsorption on date-pit and BDH activated carbons. J. Hazard. Mater. 2008, 158, 300–307. [Google Scholar] [CrossRef]
- Andaç, M.; Özyapı, E.; Şenel, S.; Say, R.; Denizli, A. Ion-selective imprinted beads for aluminum removal from aqueous solutions. Ind. Eng. Chem. Res. 2006, 45, 1780–1786. [Google Scholar] [CrossRef]
- Islam, A.; Ahmad, H.; Zaidi, N.; Yadav, S. Selective separation of aluminum from biological and environmental samples using glyoxal-bis (2-hydroxyanil) functionalized Amberlite XAD-16 resin: Kinetics and equilibrium studies. Ind. Eng. Chem. Res. 2013, 52, 5213–5220. [Google Scholar] [CrossRef]
- Aly, Z.; Graulet, A.; Scales, N.; Hanley, T. Removal of aluminium from aqueous solutions using PAN-based adsorbents: Characterisation, kinetics, equilibrium and thermodynamic studies. Environ. Sci. Pollut. Res. 2014, 21, 3972–3986. [Google Scholar] [CrossRef]
Adsorbents | Kinetic Adsorption (Pseudo-Second-Order Model) | Isotherms (Langmuir Model) | |||
---|---|---|---|---|---|
K2 (g·mg−1· min−1) | Qe (mg·g−1) | h (mg·g−1 ·min−1) | qm (mg·g−1) | KL (L·mg−1) | |
pseudo-spherical Ti-MOF NPs | 0.0324 | 20.86 | 13.67 | 20.66 | 0.1468 |
hierarchical Ti-MOF microflowers | 0.0343 | 25.53 | 21.92 | 25.85 | 0.3831 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Song, J.; Ma, G.; Li, Y.; Wei, Y.; Liu, F.; Zhou, H. Hierarchical Ti-MOF Microflowers for Synchronous Removal and Fluorescent Detection of Aluminum Ions. Biosensors 2022, 12, 935. https://doi.org/10.3390/bios12110935
Zhou J, Song J, Ma G, Li Y, Wei Y, Liu F, Zhou H. Hierarchical Ti-MOF Microflowers for Synchronous Removal and Fluorescent Detection of Aluminum Ions. Biosensors. 2022; 12(11):935. https://doi.org/10.3390/bios12110935
Chicago/Turabian StyleZhou, Jianguo, Jieyao Song, Guangqiang Ma, Yongjian Li, Yanan Wei, Fei Liu, and Hongjian Zhou. 2022. "Hierarchical Ti-MOF Microflowers for Synchronous Removal and Fluorescent Detection of Aluminum Ions" Biosensors 12, no. 11: 935. https://doi.org/10.3390/bios12110935
APA StyleZhou, J., Song, J., Ma, G., Li, Y., Wei, Y., Liu, F., & Zhou, H. (2022). Hierarchical Ti-MOF Microflowers for Synchronous Removal and Fluorescent Detection of Aluminum Ions. Biosensors, 12(11), 935. https://doi.org/10.3390/bios12110935