Academic User View: Organ-on-a-Chip Technology
Abstract
:1. Introduction
2. Overview of Organ-on-Chip Technology
3. User View Survey
3.1. Advantages and Drawbacks of Current OoC Platforms
3.2. Obstacles for Broader Usage of Current OoC Platforms
3.3. Desired Features for OoC Technology
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Low, L.A.; Mummery, C.; Berridge, B.R.; Austin, C.P.; Tagle, D.A. Organs-on-Chips: Into the next Decade. Nat. Rev. Drug Discov. 2021, 20, 345–361. [Google Scholar] [CrossRef] [PubMed]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting Organ-Level Lung Functions on a Chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allwardt, V.; Ainscough, A.J.; Viswanathan, P.; Sherrod, S.D.; McLean, J.A.; Haddrick, M.; Pensabene, V. Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering 2020, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Vulto, P.; Joore, J. Adoption of Organ-on-Chip Platforms by the Pharmaceutical Industry. Nat. Rev. Drug Discov. 2021, 20, 961–962. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Trietsch, S.J.; Naumovska, E.; Kurek, D.; Setyawati, M.C.; Vormann, M.K.; Wilschut, K.J.; Lanz, H.L.; Nicolas, A.; Ng, C.P.; Joore, J.; et al. Membrane-Free Culture and Real-Time Barrier Integrity Assessment of Perfused Intestinal Epithelium Tubes. Nat. Commun. 2017, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Busek, M.; Nøvik, S.; Aizenshtadt, A.; Amirola-Martinez, M.; Combriat, T.; Grünzner, S.; Krauss, S. Thermoplastic Elastomer (TPE)–Poly(Methyl Methacrylate) (PMMA) Hybrid Devices for Active Pumping PDMS-Free Organ-on-a-Chip Systems. Biosensors 2021, 11, 162. [Google Scholar] [CrossRef]
- Huh, D.; Leslie, D.C.; Matthews, B.D.; Fraser, J.P.; Jurek, S.; Hamilton, G.A.; Thorneloe, K.S.; McAlexander, M.A.; Ingber, D.E. A Human Disease Model of Drug Toxicity–Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice. Sci. Transl. Med. 2012, 4, 159ra147. [Google Scholar] [CrossRef] [Green Version]
- Franzen, N.; van Harten, W.H.; Retèl, V.P.; Loskill, P.; van den Eijnden-van Raaij, J.; IJzerman, M. Impact of Organ-on-a-Chip Technology on Pharmaceutical R&D Costs. Drug Discov. Today 2019, 24, 1720–1724. [Google Scholar] [CrossRef]
- Piergiovanni, M.; Cangar, O.; Leite, S.B.; Mian, L.; Jenet, A.; Corvi, R.; Whelan, M.; Taucer, F.; Ganesh, A. Putting Science into Standards Workshop on Standards for Organ-on-Chip. Stem. Cell Rep. 2021, 16, 2076–2077. [Google Scholar] [CrossRef]
- Piergiovanni, M.; Leite, S.B.; Corvi, R.; Whelan, M. Standardisation Needs for Organ on Chip Devices. Lab. Chip 2021, 21, 2857–2868. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xu, Z.; Xiao, L.; Shi, T.; Xiao, H.; Wang, Y.; Li, Y.; Xue, F.; Zeng, W. Review on the Vascularization of Organoids and Organoids-on-a-Chip. Front. Bioeng. Biotechnol. 2021, 9, 637048. [Google Scholar] [CrossRef] [PubMed]
- Modeling Pulmonary Cystic Fibrosis in a Human Lung Airway-on-a-Chip-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1569199321021068?casa_token=9JoVzDPAgY-IAAAAA:XDulX5Rn7IPxjFHR75Jt3i0DwLPF2ZeClYqwMIL6EOsaPjQoF_-RmCo-JzeYHOMW4v2Lgi6B_Q (accessed on 17 January 2022).
- Tan, K.; Keegan, P.; Rogers, M.; Lu, M.; Gosset, J.R.; Charest, J.; Bale, S.S. A High-Throughput Microfluidic Microphysiological System (PREDICT-96) to Recapitulate Hepatocyte Function in Dynamic, Re-Circulating Flow Conditions. Lab. Chip 2019, 19, 1556–1566. [Google Scholar] [CrossRef]
- Ortega-Prieto, A.M.; Skelton, J.K.; Wai, S.N.; Large, E.; Lussignol, M.; Vizcay-Barrena, G.; Hughes, D.; Fleck, R.A.; Thursz, M.; Catanese, M.T.; et al. 3D Microfluidic Liver Cultures as a Physiological Preclinical Tool for Hepatitis B Virus Infection. Nat. Commun. 2018, 9, 682. [Google Scholar] [CrossRef] [Green Version]
- Broms-Thie, L. EMA Implements New Measures to Minimise Animal Testing during Medicines Development. Available online: https://www.ema.europa.eu/en/news/ema-implements-new-measures-minimise-animal-testing-during-medicines-development (accessed on 14 January 2022).
- Commissioner, O. Advancing Alternative Methods at FDA. In FDA Report; 2022. Available online: https://www.fda.gov/science-research/about-science-research-fda/advancing-alternative-methods-fda (accessed on 9 February 2022).
- Kolanowski, T.J.; Busek, M.; Schubert, M.; Dmitrieva, A.; Binnewerg, B.; Pöche, J.; Fisher, K.; Schmieder, F.; Grünzner, S.; Hansen, S.; et al. Enhanced Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes under a Controlled Microenvironment in a Microfluidic System. Acta Biomater. 2020, 102, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Wang, Y.; Chen, W.; Li, Z.; Su, W.; Guo, Y.; Deng, P.; Qin, J. Engineering Human Islet Organoids from IPSCs Using an Organ-on-Chip Platform. Lab. Chip 2019, 19, 948–958. [Google Scholar] [CrossRef]
- Roth, A.; Berlin, M.-W. Human Microphysiological Systems for Drug Development. Science 2021, 373, 1304–1306. [Google Scholar] [CrossRef]
- Organ-on-a-Chip Technologies (OOAC)-Current Status and Translatability of Data. Available online: https://md.catapult.org.uk/resources/organ-on-a-chip-technologies-ooac-current-status-and-translatability-of-data/ (accessed on 9 February 2022).
- NCATS to Support Tissue Chip for Drug Screening Testing Centers. Available online: https://ncats.nih.gov/news/releases/2016/tissue-chips-testing-centers-funding (accessed on 14 January 2022).
- Kallepitis, C.; Bergholt, M.S.; Mazo, M.M.; Leonardo, V.; Skaalure, S.C.; Maynard, S.A.; Stevens, M.M. Quantitative Volumetric Raman Imaging of Three Dimensional Cell Cultures. Nat. Commun. 2017, 8, 14843. [Google Scholar] [CrossRef] [Green Version]
- Clarke, G.A.; Hartse, B.X.; Niaraki Asli, A.E.; Taghavimehr, M.; Hashemi, N.; Abbasi Shirsavar, M.; Montazami, R.; Alimoradi, N.; Nasirian, V.; Ouedraogo, L.J.; et al. Advancement of Sensor Integrated Organ-on-Chip Devices. Sensors 2021, 21, 1367. [Google Scholar] [CrossRef]
- Kratz, S.R.A.; Höll, G.; Schuller, P.; Ertl, P.; Rothbauer, M. Latest Trends in Biosensing for Microphysiological Organs-on-a-Chip and Body-on-a-Chip Systems. Biosensors 2019, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Mencattini, A.; Mattei, F.; Schiavoni, G.; Gerardino, A.; Businaro, L.; Di Natale, C.; Martinelli, E. From Petri Dishes to Organ on Chip Platform: The Increasing Importance of Machine Learning and Image Analysis. Front. Pharmacol. 2019, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Organ-on-a-Chip and Organoid Technology. Available online: https://www.facebook.com/groups/304082784189295/ (accessed on 3 January 2022).
- Ltd, R.M. North America Organ-on-Chip Market 2020-2030-Research and Markets. Available online: https://www.researchandmarkets.com/reports/5397792/north-america-organ-on-chip-market-2020-2030 (accessed on 9 February 2022).
- Junaid, A.; Mashaghi, A.; Hankemeier, T.; Vulto, P. An End-User Perspective on Organ-on-a-Chip: Assays and Usability Aspects. Curr. Opin. Biomed. Eng. 2017, 1, 15–22. [Google Scholar] [CrossRef]
- Interdisciplinary Training Network for Advancing Organ-on-a-Chip Technology in Europe EUROoC Project Fact Sheet H2020 CORDIS European Commission. Available online: https://cordis.europa.eu/project/id/812954 (accessed on 20 January 2022).
- Wagner, I.; Materne, E.-M.; Brincker, S.; Süßbier, U.; Frädrich, C.; Busek, M.; Sonntag, F.; Sakharov, D.A.; Trushkin, E.V.; Tonevitsky, A.G.; et al. A Dynamic Multi-Organ-Chip for Long-Term Cultivation and Substance Testing Proven by 3D Human Liver and Skin Tissue Co-Culture. Lab. Chip 2013, 13, 3538–3547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, R.; Ingram, M.; Marquez, S.; Das, D.; Delahanty, A.; Herland, A.; Maoz, B.M.; Jeanty, S.S.F.; Somayaji, M.R.; Burt, M.; et al. Robotic Fluidic Coupling and Interrogation of Multiple Vascularized Organ Chips. Nat. Biomed. Eng. 2020, 4, 407–420. [Google Scholar] [CrossRef]
- Kamiya, A.; Bukhari, R.; Togawa, T. Adaptive Regulation of Wall Shear Stress Optimizing Vascular Tree Function. Bull. Math. Biol. 1984, 46, 127–137. [Google Scholar] [CrossRef]
- Maharjan, S.; Cecen, B.; Zhang, Y.S. 3D Immunocompetent Organ-on-a-Chip Models. Small Methods 2020, 4, 2000235. [Google Scholar] [CrossRef]
Name of Company | Organs/Tissue Models | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brain/ neurons | Lung | Liver | Gut | Kidney | Islet | Muscles | Heart | Skin | Cartilage | Bone Marrow | Microvasculature | Circulating Cells | Organ Interaction | One-stop Solution | External Pump | Numbers of Publications | Year of Foundation | |
Aim biotech | 75 | 2012 | ||||||||||||||||
Altis BioSystems | 18 | 2015 | ||||||||||||||||
Ananda Devices | 1 | 2015 | ||||||||||||||||
Alveolix | 18 | 2019 | ||||||||||||||||
Aracari Bio | 10 | 2019 | ||||||||||||||||
Axosim | 9 | 2014 | ||||||||||||||||
Beonchip | 3 | 2016 | ||||||||||||||||
Biomimx | 5 | 2017 | ||||||||||||||||
BI/OND | 3 | 2017 | ||||||||||||||||
CNBio | 24 | 2009 | ||||||||||||||||
Dynamic42 | 12 | 2018 | ||||||||||||||||
EHT Technologies | 62 | 2015 | ||||||||||||||||
Draper (PREDICT-96) | 5 | 2019 | ||||||||||||||||
Emulate | 20 | 2014 | ||||||||||||||||
Hesperos | 45 | 2015 | ||||||||||||||||
Ibidi GmbH | >100 | 2001 | ||||||||||||||||
InSphero | 14 | 2009 | ||||||||||||||||
Jiksak Bioengineering | 3 | 2017 | ||||||||||||||||
Kirkstall | 16 | 2006 | ||||||||||||||||
MesoBioTech | 2 | 2016 | ||||||||||||||||
MicroBrainBT | 4 | 2014 | ||||||||||||||||
Mimetas | 61 | 2013 | ||||||||||||||||
Nortis BIO | 20 | 2012 | ||||||||||||||||
REVIVO Biosystems | 0 | 2019 | ||||||||||||||||
SynVIVO | 40 | 2015 | ||||||||||||||||
Tara biosystems | 20 | 2014 | ||||||||||||||||
TissUse | 60 | 2010 | ||||||||||||||||
Xona microfluidics | 170 | 2008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busek, M.; Aizenshtadt, A.; Amirola-Martinez, M.; Delon, L.; Krauss, S. Academic User View: Organ-on-a-Chip Technology. Biosensors 2022, 12, 126. https://doi.org/10.3390/bios12020126
Busek M, Aizenshtadt A, Amirola-Martinez M, Delon L, Krauss S. Academic User View: Organ-on-a-Chip Technology. Biosensors. 2022; 12(2):126. https://doi.org/10.3390/bios12020126
Chicago/Turabian StyleBusek, Mathias, Aleksandra Aizenshtadt, Mikel Amirola-Martinez, Ludivine Delon, and Stefan Krauss. 2022. "Academic User View: Organ-on-a-Chip Technology" Biosensors 12, no. 2: 126. https://doi.org/10.3390/bios12020126
APA StyleBusek, M., Aizenshtadt, A., Amirola-Martinez, M., Delon, L., & Krauss, S. (2022). Academic User View: Organ-on-a-Chip Technology. Biosensors, 12(2), 126. https://doi.org/10.3390/bios12020126