A Sensitive Monoclonal-Antibody-Based ELISA for Forchlorfenuron Residue Analysis in Food Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentals
2.2. Synthesis of Hapten
2.3. Preparation of Artificial Antigens
2.4. Production of mAb
2.5. Optimization of ELISA Conditions
2.6. Cross-Reactivity Test
2.7. Detection of CPPU in Spiked and Real Samples
3. Results and Discussion
3.1. Hapten Synthesis and Artificial Antigen Preparation
3.2. Antisera and Coating Antigens Combination Selection
3.3. Production of mAb and Establishment of icELISA
3.4. Cross-Reactions
3.5. Detection of CPPU in Spiked and Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; Marques, D.C.; et al. Peer review of the pesticide risk assessment of the active substance forchlorfenuron. EFSA J. 2017, 15, 4874. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Pesticide Fact Sheet, Forchlorfenuron. 2004. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-128819_01-Sep-04.pdf (accessed on 20 November 2021).
- Chen, X.M.; Yan, K.L.; Xiao, X.H.; Li, G.K. Analysis of forchlorfenuron and thidiazuron in fruits and vegetables by surface-enhanced Raman spectroscopy after selective solid-phase extraction with modified β-cyclodextrin. J. Sep. Sci. 2016, 39, 2340–2346. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.T.; Yu, L.Y.; Shuai, P.Q.; Yu, G.; He, K.R. Determination of Forechlorfenuron Residue in Fruits and Vegetables by QuEChERS Extraction and HPLC-MS/MS. Agric. Sci. Technol. 2017, 18, 1686–1690. [Google Scholar] [CrossRef]
- Ping, L.; Xu, B.; Zhou, Q.; Hong, Y.; Sun, Q.; Wang, J.; Zhu, D. Comparative pharmacokinetic study of Forchlorfenuron in adult and juvenile rats. Molecules 2021, 26, 4276. [Google Scholar] [CrossRef]
- Zhu, D.F.; Ping, L.; Shen, X.F.; Hong, Y.W.; Weng, Q.J.; He, Q.J.; Wang, J.J. Effects of prepubertal exposure to forchlorfenuron through prenatal and postnatal gavage administration in developing Sprague-Dawley rats. Reprod. Toxicol. 2020, 98, 9. [Google Scholar] [CrossRef]
- Gong, G.; Kam, H.; Tse, Y.; Lee, S.M. Cardiotoxicity of forchlorfenuron (CPPU) in zebrafish (Danio rerio) and H9c2 cardiomyocytes. Chemosphere 2019, 235, 153–162. [Google Scholar] [CrossRef]
- Gong, G.; Kam, H.; Tse, Y.; Giesy, J.; Seto, S.; Lee, S.M. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. Environ. Pollut. 2021, 271, 115791. [Google Scholar] [CrossRef]
- Bu, Q.; Wang, X.Y.; Xie, H.C.; Zhong, K.; Wu, Y.P.; Zhang, J.Q.; Wang, Z.S.; Gao, H.; Huang, Y.N. 180 day repeated-dose toxicity study on forchlorfenuron in SpragueDawley rats and its effects on the production of steroid hormones. J. Agric. Food Chem. 2019, 67, 10207–10213. [Google Scholar] [CrossRef]
- Li, M.H.; Guo, X.D.; Chen, Y.J.; Zhang, K.; Bai, Q.; Gao, Z.P.; Long, F.Y. The degradation of forchlorfenuron in the model kiwifruit juice by ultrasonic treatment. J. Food Processing Preserv. 2020, 44, e14424. [Google Scholar] [CrossRef]
- European Commission. Pesticides Residues. No 398/2014 Annex II. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0398&from=EN (accessed on 20 November 2021).
- National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. Available online: https://agrochemical.chemlinked.com/sites/default/files/preview-doc/sample_translation_of_gb2763-2019.pdf (accessed on 20 November 2021).
- Lu, D.; Zhao, W.; Gao, G.; Meng, Y.; Zeng, X.; Wu, N.; Lei, Y. Raman spectroscopy analysis of Forchlorfenuron based on two-dimensional correlation technique. Spectrosc. Spectr. Anal. 2019, 39, 1464–1467. [Google Scholar] [CrossRef]
- Li, P.; Lu, Y.; Cao, J.; Li, M.; Yang, C.; Yan, H. Imidazolium ionic-liquid-modified phenolic resin for solid-phase extraction of thidiazuron and forchlorfenuron from cucumbers. J. Chromatogr. A 2020, 1623, 461192. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hou, X.; Han, M.; Qiu, S.; Li, Y. Simultaneous determination of multiclass plant growth regulators in fruits using the quick, easy, cheap, effective, rugged, and safe method and ultra-high performance liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2020, 43, 788–798. [Google Scholar] [CrossRef]
- Ren, Y.; Xiang, P.; Xie, Q.; Yang, H.; Liu, S. Rapid analysis of forchlorfenuron in fruits using molecular complex-based dispersive liquid-liquid microextraction. Food Addit. Contam. A 2021, 38, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Yu, G.C.; Sheng, W.; Shi, M.; Guo, B.X.; Wang, S. Development of an enzyme-linked immunosorbent assay based a monoclonal antibody for the detection of pyrethroids with phenoxybenzene multiresidue in river water. J. Agric. Food Chem. 2011, 59, 2997–3003. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.A.; Wang, S.; Allan, R.D.; Kennedy, I.R. A Rapid Aflatoxin B1 ELISA: Development and Validation with Reduced Matrix Effects for Peanuts, Corn, Pistachio, and Soybeans. J. Agric. Food Chem. 2004, 52, 2746–2755. [Google Scholar] [CrossRef]
- Suárez-Pantaleón, C.; Mercader, J.V.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Production and Characterization of Monoclonal and Polyclonal Antibodies to Forchlorfenuron. J. Agric. Food Chem. 2008, 56, 11122–11131. [Google Scholar] [CrossRef]
- Suárez-Pantaleón, C.; Mercader, J.V.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Hapten Synthesis and Polyclonal Antibody-Based Immunoassay Development for the Analysis of Forchlorfenuron in Kiwifruit. J. Agric. Food Chem. 2010, 58, 8502–8511. [Google Scholar] [CrossRef]
- Suárez-Pantaleón, C.; Esteve-Turrillas, F.A.; Mercader, J.V.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Development and validation of a direct competitive monoclonal antibody-based immunoassay for the sensitive and selective analysis of the phytoregulator forchlorfenuron. Anal. Bioanal. Chem. 2012, 403, 2019–2026. [Google Scholar] [CrossRef]
- Lu, J.K.; Ai, M.Y.; Li, S.G. Preparation of anti-CPPU monoclonal antibody and development of an indirect competitive ELISA method. Hubei Agric. Sci. 2016, 55, 5584–5587. [Google Scholar] [CrossRef]
- Xiao, S.M. The Establishment of Gold Nanoparticles-Colorimetric and Immunoassay Analysis Method on Detection of Pesticide Residues in Environment and Food. Master’s Thesis, Nanchang University, Nanchang, China, 2017. [Google Scholar]
- Ni, T.T.; Peng, D.P.; Wang, Y.X.; Pan, Y.H.; Chen, D.M.; Wang, Y.L.; Tao, Y.F.; Yuan, Z.H. Development of a broad-spectrum monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the multi-residue detection of avermectins in edible animal tissues and milk. Food Chem. 2019, 286, 234–240. [Google Scholar] [CrossRef]
- Chen, Z.J.; Liu, X.X.; Xiao, Z.L.; Fu, H.J.; Huang, Y.P.; Huang, S.Y.; Shen, Y.D.; He, F.; Yang, X.X.; Hammock, B.D.; et al. Production of a specific monoclonal antibody for 1-naphthol based on novel hapten strategy and development of an easy-to-use ELISA in urine samples. Ecotoxicol. Environ. Saf. 2020, 196, 110533. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.L.; Wang, Y.L.; Shen, Y.D.; Xu, Z.L.; Dong, J.X.; Wang, H.; Situ, C.; Wang, F.; Yang, J.Y.; Lei, H.T.; et al. Specifc monoclonal antibody- based enzyme immunoassay for sensitive and reliable detection of Alternaria mycotoxin iso-tenuazonic acid in food products. Food Anal. Methods 2018, 11, 635–645. [Google Scholar] [CrossRef]
- Lu, P.; Yang, S.; Hu, D.Y.; Ding, X.Y.; Shi, M.M. Synthesis of Hapten and Development of Immunoassay Based on Monoclonal Antibody for the Detection of Dufulin in Agricultural Samples. J. Agric. Food Chem. 2013, 61, 10302–10309. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Shen, Y.D.; Wang, H.; Xiao, Z.L.; Sun, Y.M.; Lei, H.T.; Yang, J.Y.; Xu, Z.L. Production of Polyclonal Antibody and Development of a Competitive Enzyme-Linked Immunosorbent Assay for Benzoic Acid in Foods. Food Anal. Methods 2015, 8, 1101–1111. [Google Scholar] [CrossRef]
- Shen, Y.D.; Xiao, B.; Xu, Z.L.; Lei, H.T.; Wang, H.; Yang, J.Y.; Sun, Y.M. Hapten synthesis and development of an indirect competitive enzyme-linked immunosorbent assay for chlorpromazine in pork, chicken and swine liver. Anal. Methods 2011, 3, 2797–2803. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.L.; Xie, Y.Y.; Tian, Y.X.; Shen, Y.D.; Young, G.M.; Wang, H.; Lei, H.T.; Sun, Y.M. Development of polyclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for sodium saccharin residue in food samples. Food Chem. 2011, 126, 815–820. [Google Scholar] [CrossRef]
- Paek, S.H.; Lee, S.H.; Cho, J.H.; Kim, Y.S. Development of Rapid One-Step Immunochromatographic Assay. Methods 2000, 22, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Marco, M.P.; Gee, S.J.; Cheng, H.M.; Liang, Z.Y.; Hammock, B.D. Development of an enzyme-linked immunosorbent assay for carbaryl. J. Agric. Food Chem. 1993, 41, 423–430. [Google Scholar] [CrossRef]
- Jiang, X.X.; Shi, H.Y.; Wu, N.; Wang, M.H. Development of an enzyme-linked immunosorbent assay for diniconazole in agricultural samples. Food Chem. 2011, 125, 1385–1389. [Google Scholar] [CrossRef]
- Henniona, M.C.; Barcelo, D. Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: A review. Anal. Chim. Acta 1998, 362, 3–34. [Google Scholar] [CrossRef]
- Qi, Y.H.; Shan, W.C.; Liu, Y.Z.; Zhang, Y.J.; Wang, J.P. Production of the polyclonal antibody against Sudan 3 and immunoassay of Sudan dyes in food samples. J. Agric. Food Chem. 2012, 60, 2116–2122. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wu, P.; Lai, D.; Zheng, S.; Chen, Y.; Eremin, S.A.; Peng, W.; Zhao, S. Development of a highly specific fluorescence immunoassay for detection of Diisobutyl Phthalate in edible oil samples. J. Agric. Food Chem. 2015, 63, 9372–9378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Xu, Z.L.; Wang, F.; Cai, J.; Dong, J.X.; Zhang, J.R.; Si, R.; Wang, C.L.; Wang, Y.; Shen, Y.D.; et al. Isolation of Bactrian Camel Single Domain Antibody for Parathion and Development of One-Step dc-FEIA Method Using VHH-Alkaline Phosphatase Fusion Protein. Anal. Chem. 2018, 90, 12886–12892. [Google Scholar] [CrossRef] [PubMed]
- GB/T 23200.110-2018; Determination of Forchlorfenuron in Foods of Plant Origin-Liquid Chromatography Tandem Mass Spectrometry. National Standards of the People’s Republic of China: Beijing, China, December 2018.
- Chen, X.J. Application of Immunology in Plant Science; China Agricultural University Press: Beijing, China, 1998. [Google Scholar]
- Barnych, B.; Vasylieva, N.; Joseph, T.; Hulsizer, S.; Nguyen, H.M.; Cajka, T.; Pessah, I.; Wulff, H.; Gee, S.J.; Hammock, B.D. Development of tetramethylenedisulfotetramine (TETS) hapten library: Synthesis, electrophysiological studies and immune response in rabbits. Chem.-A Eur. J. 2017, 23, 8466–8472. [Google Scholar] [CrossRef] [PubMed]
- Vasylieva, N.; Barnych, B.; Rand, A.A.; Inceoglu, B.; Gee, S.J.; Hammock, B.D. Sensitive Immunoassay for Detection and Quantification of the Neurotoxin, Tetramethylenedisulfotetramine. Anal. Chem. 2017, 89, 5612–5619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasylieva, N.; Ahn, K.C.; Barnych, B.; Gee, S.J.; Hammock, B.D. Development of an Immunoassay for the Detection of the Phenylpyrazole Insecticide Fipronil. Environ. Sci. Technol. 2015, 49, 10038–10047. [Google Scholar] [CrossRef]
- Chen, Z.J.; Fu, H.J.; Luo, L.; Sun, Y.M.; Yang, J.Y.; Zeng, D.P.; Shen, Y.D.; Xu, Z.L. Development of competitive indirect ELISAs with a flexible working range for the simple quantification of melatonin in medicinal foods. Anal. Methods 2017, 9, 1617–1626. [Google Scholar] [CrossRef]
- Liang, C.Z.; Jin, R.Y.; Gui, W.J.; Zhu, G.N. Enzyme-Linked Immunosorbent Assay Based on a Monoclonal Antibody for the Detection of the Insecticide Triazophos: Assay Optimization and Application to Environmental Samples. Environ. Sci. Technol. 2007, 41, 6783–6788. [Google Scholar] [CrossRef]
- Chen, L.Y.; Wang, M.C.; Xiang, H.F.; Lin, X.J.; Cao, D.H.; Ye, L.Y. Prediction of effect-site concentration of sufentanil by dose–response target controlled infusion of sufentanil and propofol for analgesic and sedation maintenance in burn dressing changes. Environ. Sci. Technol. 2014, 40, 455–459. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Song, C.; Hu, X.; Wang, F.; Zeng, X. Hapten synthesis and the development of an ultrasensitive indirect competitive ELISA for the determination of diethylstilbestrol in food samples. Sci. Rep. 2020, 10, 3270. [Google Scholar] [CrossRef]
- Mari, G.M.; Li, H.; Dong, B.; Yang, H.; Talpur, A.; Mi, J.; Guo, L.; Yu, X.; Ke, Y.; Han, D.; et al. Hapten synthesis, monoclonal antibody production and immunoassay development for direct detection of 4-hydroxybenzehydrazide in chicken, the metabolite of nifuroxazide. Food Chem. 2021, 355, 129598. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.L.; Shen, Y.D.; Sun, Y.M.; Campbell, K.; Tian, Y.X.; Zhang, S.W.; Lei, H.T.; Jiang, Y.M. Novel hapten synthesis for antibody production and development of an enzymelinked immunosorbent assay for determination of furaltadone metabolite 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ). Talanta 2013, 103, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, Y.J.; Jiang, W.X.; Saeger, S.D.; Shen, J.Z.; Zhang, S.X.; Wang, Z.H. Development of a sensitive enzyme-linked immunosorbent assay for the detection of fumonisin B1 in maize. Toxicon 2012, 60, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.Q.; Barnych, B.; Li, Z.F.; Wan, D.B.; Li, D.Y.; Vasylieva, N.; Knezevic, S.Z.; Osipitan, O.A.; Scott, J.E.; Zhang, J.L.; et al. Hapten Synthesis, Antibody Development, and a Highly Sensitive Indirect Competitive Chemiluminescent Enzyme Immunoassay for Detection of Dicamba. J. Agric. Food Chem. 2019, 67, 5711–5719. [Google Scholar] [CrossRef] [PubMed]
Immunogen | CPPU-COOH-BSA | CPPU-COOH-KLH | CPPU-COOH-THY | |||
---|---|---|---|---|---|---|
Coating Antigens | Titer a (103) | Inhibition b of CPPU (%) | Titer a (103) | Inhibition b of CPPU (%) | Titer a (103) | Inhibition b of CPPU (%) |
CPPU-COOH-BSA | - | - | 16 | 55.6 | 32 | 83.3 |
CPPU-COOH-OVA | 32 | 58.4 | 8 | 55.9 | 16 | 82.9 |
Analyte | Structure | IC50 (ng/mL) | Cross-Reactivity (%) |
---|---|---|---|
Forchlorfenuron (CPPU) | 1.04 | 100 | |
3,6-Dichloropicolinic | 166.20 | 0.63 | |
Linuron | 226.43 | 0.46 | |
Thidiazuron (TDZ) | 19.42 | 5.36 | |
Picloram | 450.72 | 0.23 | |
Chlortoluron | 64.34 | 1.62 | |
Diuron | 823.79 | 0.13 |
Samples | Spiked (ng/g) | Measured ± SD (ng/g) | Recovery (%) | CV (%) |
---|---|---|---|---|
Cucumber | 40 | 38.70 ± 0.16 | 96.80 | 8.33 |
80 | 79.00 ± 0.25 | 98.80 | 6.25 | |
160 | 159.20 ± 0.40 | 99.60 | 5.01 | |
Orange | 40 | 47.60 ± 0.14 | 119.14 | 6.21 |
80 | 70.20 ± 0.11 | 85.23 | 3.11 | |
120 | 104.20 ± 0.36 | 86.88 | 6.82 |
Sample | Number | icELISA | LC-MS | ||
---|---|---|---|---|---|
ng/mL | ng/g | ng/mL | ng/g | ||
Cucumber | 1 | 5.12 | 102.4 | 5.17 | 103.4 |
2 | ND | ND | 0.13 | 2.6 | |
3 | 1.96 | 39.2 | 2.62 | 52.4 | |
4 | ND | ND | 0.12 | 2.4 | |
Orange | 1 | ND | ND | 0.14 | 2.8 |
2 | ND | ND | 0.06 | 1.2 | |
3 | ND | ND | 0.13 | 2.6 | |
4 | 0.32 | 6.4 | 0.35 | 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xie, B.; Cheng, Y.; Luo, L.; Liang, Y.; Xiao, Z. A Sensitive Monoclonal-Antibody-Based ELISA for Forchlorfenuron Residue Analysis in Food Samples. Biosensors 2022, 12, 78. https://doi.org/10.3390/bios12020078
Liu X, Xie B, Cheng Y, Luo L, Liang Y, Xiao Z. A Sensitive Monoclonal-Antibody-Based ELISA for Forchlorfenuron Residue Analysis in Food Samples. Biosensors. 2022; 12(2):78. https://doi.org/10.3390/bios12020078
Chicago/Turabian StyleLiu, Xinmei, Bo Xie, Yongjian Cheng, Lin Luo, Yifan Liang, and Zhili Xiao. 2022. "A Sensitive Monoclonal-Antibody-Based ELISA for Forchlorfenuron Residue Analysis in Food Samples" Biosensors 12, no. 2: 78. https://doi.org/10.3390/bios12020078
APA StyleLiu, X., Xie, B., Cheng, Y., Luo, L., Liang, Y., & Xiao, Z. (2022). A Sensitive Monoclonal-Antibody-Based ELISA for Forchlorfenuron Residue Analysis in Food Samples. Biosensors, 12(2), 78. https://doi.org/10.3390/bios12020078