Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications
Abstract
:1. Introduction
2. Instrumentation
2.1. DCFs and Couplers
2.2. DCF-Based Probe Design
2.3. Fiber Optics Probe
2.3.1. Temperature Sensing
2.3.2. pH Measurement
2.3.3. Displacement, Distance and Pressure Sensing
3. Applications
3.1. OCT and Fluorescence-Based pH Measurement
3.2. OCT and Fluorescence-Based Temperature Sensing
3.3. OCT and Fluorescence-Based Molecular Sensing
3.4. OCT and Reflectance-Based Spectroscopic Sensing
3.5. OCT and Multi-Photon Sensing
3.6. OCT and Reflectrometry
3.7. Structural Imaging and Distance Sensing
4. Perspective and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ughi, G.J.; Wang, H.; Gerbaud, E.; Gardecki, J.A.; Fard, A.M.; Hamidi, E.; Vacas-Jacques, P.; Rosenberg, M.; Jaffer, F.A.; Tearney, G.J. Clinical Characterization of Coronary Atherosclerosis with Dual-Modality OCT and Near-Infrared Autofluorescence Imaging. JACC Cardiovasc. Imaging 2016, 9, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Gora, M.J.; Sauk, J.S.; Carruth, R.W.; Gallagher, K.a.; Suter, M.J.; Nishioka, N.S.; Kava, L.E.; Rosenberg, M.; Bouma, B.E.; Tearney, G.J. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 2013, 19, 238–240. [Google Scholar] [CrossRef] [Green Version]
- Beaudette, K.; Godbout, N.; Boudoux, C. Advances in Multimodal Imaging Using Double-Clad Fiber Couplers. J. Light. Technol. 2019, 37, 5674–5685. [Google Scholar] [CrossRef]
- Leung, A.; Shankar, P.M.; Mutharasan, R. A review of fiber-optic biosensors. Sens. Actuators B Chem. 2007, 125, 688–703. [Google Scholar] [CrossRef]
- Martín, F.J.F.; Rodriguez, J.C.C.; Anton, J.A.; Perez, J.V.; Sánchez-Barragán, I.; Costa-Fernández, J.M.; Sanz-Medel, A. Design of a low-cost optical instrument for pH fluorescence measurements. IEEE Trans. Instrum. Meas. 2006, 55, 1215–1221. [Google Scholar]
- Mowbray, S.E.; Amiri, A.M. A Brief Overview of Medical Fiber Optic Biosensors and Techniques in the Modification for Enhanced Sensing Ability. Diagnostics 2019, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, M.; Algorri, J.F.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Recent Advances in Biomedical Photonic Sensors: A Focus on Optical-Fibre-Based Sensing. Sensors 2021, 21, 6469. [Google Scholar] [CrossRef]
- Andryukov, B.G.; Lyapun, I.N.; Matosova, E.V.; Somova, L.M. Biosensor Technologies in Medicine: From Detection of Biochemical Markers to Research into Molecular Targets (Review). Sovrem. Tekhnologii Med. 2021, 12, 70–83. [Google Scholar] [CrossRef]
- De Montigny, E.; Madore, W.J.; Ouellette, O.; Bernard, G.; Leduc, M.; Strupler, M.; Boudoux, C.; Godbout, N. Double-clad fiber coupler for partially coherent detection. Opt. Express 2015, 23, 9040. [Google Scholar] [CrossRef]
- Sherlock, B.E.; Li, C.; Zhou, X.; Alfonso-Garcia, A.; Bec, J.; Yankelevich, D.; Marcu, L. Multiscale, multispectral fluorescence lifetime imaging using a double-clad fiber. Opt. Lett. 2019, 44, 2302. [Google Scholar] [CrossRef]
- Attendu, X.; Bloemen, P.R.; Kind, N.H.; de Bruin, D.M.; Faber, D.J.; Boudoux, C.; van Leeuwen, T.G. Combined optical coherence tomography and broadband single fiber reflectance spectroscopy. In Proceedings of the Multimodal Biomedical Imaging XVI, International Society for Optics and Photonics, Online Only, CA, USA, 6–12 March 2021; Volume 11634, p. 1. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Choi, H.Y.; Na, J.; Choi, E.S.; Lee, B.H. Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber. Opt. Lett. 2008, 33, 2347–2349. [Google Scholar] [CrossRef]
- Wang, L.; Choi, H.Y.; Jung, Y.; Lee, B.H.; Kim, K.T. Optical probe based on double-clad optical fiber for fluorescence spectroscopy. Opt. Express 2007, 15, 17681–17689. [Google Scholar] [CrossRef]
- Lemire-Renaud, S.; Rivard, M.; Strupler, M.; Morneau, D.; Verpillat, F.; Daxhelet, X.; Godbout, N.; Boudoux, C. Double-clad fiber coupler for endoscopy. Opt. Express 2010, 18, 9755. [Google Scholar] [CrossRef]
- Lemire-Renaud, S.; Strupler, M.; Benboujja, F.; Godbout, N.; Boudoux, C. Double-clad fiber with a tapered end for confocal endomicroscopy. Biomed. Opt. Express 2011, 2, 2961–2972. [Google Scholar] [CrossRef]
- Madore, W.J.; De Montigny, E.; Ouellette, O.; Lemire-renaud, S.; Leduc, M.; Daxhelet, X.; Godbout, N.; Boudoux, C. Asymmetric double-clad fiber couplers for endoscopy. Opt. Lett. 2013, 38, 4514–4517. [Google Scholar] [CrossRef]
- Tabrizi, S.H.; Aghamiri, S.M.R.; Farzaneh, F.; Amelink, A.; Sterenborg, H.J.C.M. Single fiber reflectance spectroscopy on cervical premalignancies: The potential for reduction of the number of unnecessary biopsies. J. Biomed. Opt. 2013, 18, 017002. [Google Scholar] [CrossRef]
- Sircan-Kucuksayan, A.; Denkceken, T.; Canpolat, M. Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters. J. Biomed. Opt. 2015, 20, 115007. [Google Scholar] [CrossRef]
- Stegehuis, P.L.; Boogerd, L.S.; Inderson, A.; Veenendaal, R.A.; van Gerven, P.; Bonsing, B.A.; Sven Mieog, J.; Amelink, A.; Veselic, M.; Morreau, H.; et al. Toward optical guidance during endoscopic ultrasound-guided fine needle aspirations of pancreatic masses using single fiber reflectance spectroscopy: A feasibility study. J. Biomed. Opt. 2017, 22, 24001. [Google Scholar] [CrossRef]
- Bugter, O.; Hardillo, J.A.; de Jong, R.J.B.; Amelink, A.; Robinson, D.J. Optical pre-screening for laryngeal cancer using reflectance spectroscopy of the buccal mucosa. Biomed. Opt. Express 2018, 9, 4665–4678. [Google Scholar] [CrossRef]
- van Leeuwen-van Zaane, F.; Gamm, U.A.; van Driel, P.B.A.A.; Snoeks, T.J.A.; de Bruijn, H.S.; van der Ploeg-van den Heuvel, A.; Mol, I.M.; Löwik, C.W.G.M.; Sterenborg, H.J.C.M.; Amelink, A.; et al. In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy. Biomed. Opt. Express 2013, 4, 696–708. [Google Scholar] [CrossRef]
- Post, A.L.; de Groof, A.J.; Zhang, X.U.; Swager, A.F.; Fockens, K.N.; Pouw, R.E.; Weusten, B.L.A.M.; Faber, D.J.; de Bruin, D.M.; Bergman, J.J.G.H.M.; et al. Toward improved endoscopic surveillance with multidiameter single fiber reflectance spectroscopy in patients with Barrett’s esophagus. J. Biophotonics 2021, 14, e202000351. [Google Scholar] [CrossRef]
- Beaudette, K.; Strupler, M.; Ren, J.; Bouma, B.E.; Boudoux, C. Radiometric model for coaxial single- and multimode optical emission from double-clad fiber. Appl. Opt. 2018, 57, 1110–1118. [Google Scholar] [CrossRef]
- Mavadia, J.; Xi, J.; Chen, Y.; Li, X. An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging. Biomed. Opt. Express 2012, 3, 2851–2859. [Google Scholar] [CrossRef] [Green Version]
- Lorenser, D.; Quirk, B.C.; Auger, M.; Madore, W.J.; Kirk, R.W.; Godbout, N.; Sampson, D.D.; Boudoux, C.; McLaughlin, R.A. Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography. Opt. Lett. 2013, 38, 266–268. [Google Scholar] [CrossRef]
- Pahlevaninezhad, H.; Lee, A.M.D.; Shaipanich, T.; Raizada, R.; Cahill, L.; Hohert, G.; Yang, V.X.D.; Lam, S.; MacAulay, C.; Lane, P. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography. Biomed. Opt. Express 2014, 5, 2978. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wang, J.; Tan, W.; Feng, Y.; Zheng, G. Miniaturized all fiber probe for optical coherence tomography and pH detection of biological tissue. J. Biophotonics 2021, 14, e202000239. [Google Scholar] [CrossRef]
- Min, E.J.; Lee, J.H.; Shin, J.G.; Kwon, S.M.; You, H.; Yoon, J.H.; Kim, Y.C.; Lee, B.H. Dual-channel fiber-probe for simultaneous imaging of swept source optical coherence tomography and fluorescence spectroscopy. In Proceedings of the SPIE 8576, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIII, San Francisco, CA, USA, 20 March 2013; Volume 8576. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.W.; Cho, H.S.; Song, J.W.; Nam, H.S.; Oh, D.J.; Park, K.; Oh, W.Y.; Yoo, H.; Kim, J.W. Fully Integrated High-Speed Intravascular Optical Coherence Tomography/Near-Infrared Fluorescence Structural/Molecular Imaging In Vivo Using a Clinically Available Near-Infrared Fluorescence-Emitting Indocyanine Green to Detect Inflamed Lipid-Rich Atherom. Circ. Cardiovasc. Interv. 2014, 7, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Gardecki, J.A.; Ughi, G.J.; Jacques, P.V.; Hamidi, E.; Tearney, G.J. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm. Biomed. Opt. Express 2015, 6, 1363. [Google Scholar] [CrossRef] [Green Version]
- Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic optical coherence tomography: Technologies and clinical applications. Biomed. Opt. Express 2017, 8, 2405–2444. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.; Kim, J.W.; Shishkov, M.; Namati, E.; Morse, T.; Shubochkin, R.; McCarthy, J.R.; Ntziachristos, V.; Bouma, B.E.; Jaffer, F.A.; et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 2011, 17, 1680–1684. [Google Scholar] [CrossRef] [Green Version]
- Beaudette, K.; Lo, W.; Villiger, M.; Shishkov, M.; Godbout, N.; Bouma, B.E.; Boudoux, C. Towards in vivo laser coagulation and concurrent optical coherence tomography through double-clad fiber devices. In Proceedings of the SPIE 9701, Multimodal Biomedical Imaging XI, San Francisco, CA, USA, 10 March 2016; Volume 9701, p. 97010B. [Google Scholar] [CrossRef]
- Beaudette, K.; Baac, H.W.; Madore, W.J.; Villiger, M.; Godbout, N.; Bouma, B.E.; Boudoux, C. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler. Biomed. Opt. Express 2015, 6, 1293–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feroldi, F.; Verlaan, M.; Knaus, H.; Davidoiu, V.; Vughts, D.J.; van Dongen, G.A.; Molthoff, C.F.; De Boer, J.F. High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model. Biomed. Opt. Express 2018, 9, 6186–6204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhu, Z.; Chen, J.J.; Jing, J.C.; Sun, C.H.; Kim, S.; Chung, P.S.; Chen, Z. Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging. Biomed. Opt. Express 2019, 10, 2419. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cobb, M.J.; Chen, Y.; Kimmey, M.B.; Li, X. Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt. Lett. 2004, 29, 1763–1765. [Google Scholar] [CrossRef]
- Wu, Y.; Leng, Y.; Xi, J.; Li, X. Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues. Opt. Express 2009, 17, 7907–7915. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Murari, K.; Zhang, Y.; Chen, Y.; Li, M.J.; Li, X. Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy. J. Biomed. Opt. 2012, 17, 021108. [Google Scholar] [CrossRef]
- Liang, W.; Hall, G.; Messerschmidt, B.; Li, M.J.; Li, X. Nonlinear optical endomicroscopy for label-free functional histology in vivo. Light Sci. Appl. 2017, 6, e17082. [Google Scholar] [CrossRef]
- Chen, X.; Kim, W.; Serafino, M.J.; Tan, Z.; Jo, J.A.; Applegate, B.E. Dual-modality optical coherence tomography and frequency-domain fluorescence lifetime imaging microscope system for intravascular imaging. J. Biomed. Opt. 2020, 25, 014507. [Google Scholar] [CrossRef]
- Wartak, A.; Kelada, A.K.; Leon Alarcon, P.A.; Bablouzian, A.L.; Ahsen, O.O.; Gregg, A.L.; Wei, Y.; Bollavaram, K.; Sheil, C.J.; Farewell, E.; et al. Dual-modality optical coherence tomography and fluorescence tethered capsule endomicroscopy. Biomed. Opt. Express 2021, 12, 4308. [Google Scholar] [CrossRef]
- Vakoc, B.J.; Shishkov, M.; Yun, S.H.; Oh, W.Y.; Suter, M.J.; Desjardins, A.E.; Evans, J.a.; Nishioka, N.S.; Tearney, G.J.; Bouma, B.E. Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). Gastrointest. Endosc. 2007, 65, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Schartner, E.; Musolino, S.; Quirk, B.C.; Kirk, R.W.; Ebendorff-Heidepriem, H.; McLaughlin, R.A. Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue. Opt. Lett. 2018, 43, 1682. [Google Scholar] [CrossRef]
- Schartner, E.P.; Monro, T.M. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings. Sensors 2014, 14, 21693–21701. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Rai, V. Rare Earth Doped Materials for Temperature Sensors; Nova Publisher: New York, NY, USA, 2014; pp. 279–292. [Google Scholar]
- Capon, P.K.; Li, J.; Horsfall, A.J.; Yagoub, S.; Schartner, E.P.; Khalid, A.; Kirk, R.W.; Purdey, M.S.; Dunning, K.R.; McLaughlin, R.A.; et al. A Silk-Based Functionalization Architecture for Single Fiber Imaging and Sensing. Adv. Funct. Mater. 2021, 32, 2010713. [Google Scholar] [CrossRef]
- Khalid, A.; Peng, L.; Arman, A.; Warren-Smith, S.C.; Schartner, E.P.; Sylvia, G.M.; Hutchinson, M.R.; Ebendorff-Heidepriem, H.; McLaughlin, R.A.; Gibson, B.C.; et al. Silk: A bio-derived coating for optical fiber sensing applications. Sens. Actuators B Chem. 2020, 311, 127864. [Google Scholar] [CrossRef]
- Garcia, Y.R.; Corres, J.M.; Goicoechea, J. Vibration detection using optical fiber sensors. J. Sens. 2010, 2010, 936487. [Google Scholar] [CrossRef] [Green Version]
- Berkovic, G.; Shafir, E. Optical methods for distance and displacement measurements. Adv. Opt. Photonics 2012, 4, 441–471. [Google Scholar] [CrossRef]
- Werzinger, S.; Härteis, L.; Köhler, A.; Engelbrecht, R.; Schmauss, B. Effective light coupling in reflective fiber optic distance sensors using a double-clad fiber. In Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 24–28 April 2017; Volume 10323, p. 1032391. [Google Scholar] [CrossRef]
- Lee, D.R.; Jang, S.; Lee, M.W.; Yoo, H. Compact fiber optic dual-detection confocal displacement sensor. Appl. Opt. 2016, 55, 7631–7635. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Y.; Ma, C. Photothermally tunable Fabry-Pérot fiber interferometer for photoacoustic mesoscopy. Biomed. Opt. Express 2020, 11, 2607. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, C.; Zeng, J.; Song, W. Ultrasonic signal detection based on Fabry–Perot cavity sensor. Adv. Opt. Photonics Vis. Comput. Ind. Biomed. Art 2021, 4, 4–9. [Google Scholar] [CrossRef]
- Talebzadeh, M.D.; Khademalrasool, M. Precisely Designed and Modeled Double-Clad Fiber Optic Pressure Sensor. IEEE Instrum. Meas. Mag. 2021, 24, 12–19. [Google Scholar] [CrossRef]
- Poeggel, S.; Tosi, D.; Duraibabu, D.; Leen, G.; McGrath, D.; Lewis, E. Optical Fibre Pressure Sensors in Medical Applications. Sensors 2015, 15, 17115–17148. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Leitgeb, R.A.; Placzek, F.; Rank, E.A.; Krainz, L.; Haindl, R.; Li, Q.; Liu, M.; Liu, M.; Unterhuber, A.; Schmoll, T.; et al. Enhanced medical diagnosis for dOCTors: A perspective of optical coherence tomography. J. Biomed. Opt. 2021, 26, 100601. [Google Scholar] [CrossRef] [PubMed]
- Tanskanen, A.; Hohert, G.; Lee, A.; Lane, P.M. Higher-Order Core-Like Modes in Double-Clad Fiber Contribute to Multipath Artifacts in Optical Coherence Tomography. J. Light. Technol. 2021, 39, 5573–5581. [Google Scholar] [CrossRef]
- Sherlock, B.E.; Phipps, J.E.; Bec, J.; Marcu, L. Simultaneous, label-free, multispectral fluorescence lifetime imaging and optical coherence tomography using a double-clad fiber. Opt. Lett. 2017, 42, 3753. [Google Scholar] [CrossRef]
- Li, Y.; Jing, J.; Yu, J.; Zhang, B.; Huo, T.; Yang, Q.; Chen, Z. Multimodality endoscopic optical coherence tomography and fluorescence imaging technology for visualization of layered architecture and subsurface microvasculature. Opt. Lett. 2018, 43, 2074. [Google Scholar] [CrossRef]
- Hohert, G.; Meyers, R.; Lam, S.; Vertikov, A.; Lee, A.; Lam, S.; Lane, P. Feasibility of combined optical coherence tomography and autofluorescence imaging for visualization of needle biopsy placement. J. Biomed. Opt. 2020, 25, 106003. [Google Scholar] [CrossRef]
- Buenconsejo, A.L.; Hohert, G.; Manning, M.; Abouei, E.; Tingley, R.; Janzen, I.; McAlpine, J.; Miller, D.; Lee, A.; Lane, P.; et al. Submillimeter diameter rotary-pullback fiber-optic endoscope for narrowband red-green-blue reflectance, optical coherence tomography, and autofluorescence in vivo imaging. J. Biomed. Opt. 2019, 25, 032005. [Google Scholar] [CrossRef]
- Attendu, X.; Bourget, M.H.; de Sivry-Houle, M.P.; Boudoux, C. Coregistered optical coherence tomography and frequency-encoded multispectral imaging for spectrally sparse color imaging. J. Biomed. Opt. 2019, 25, 032008. [Google Scholar] [CrossRef] [Green Version]
- Vega, D.; Barton, J.K.; Galvez, D.B.; Santaniello, S.P.; Adams, Z.; Pham, N.Y.; Kiekens, K.; Cordova, R.; Montague, J. A coregistered multimodal imaging system for reflectance, multiphoton, and optical coherence microscopy. In Proceedings of the SPIE 11634, Multimodal Biomedical Imaging XVI, Online, 1 April 2021. [Google Scholar] [CrossRef]
- El-Haddad, M.T.; Bozic, I.; Tao, Y.K. Spectrally encoded coherence tomography and reflectometry: Simultaneous en face and cross-sectional imaging at 2 gigapixels per second. J. Biophotonics 2018, 11, e201700268. [Google Scholar] [CrossRef]
- Vaupel, P.W.; Frinak, S.; Bicher, H.I. Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res. 1981, 41, 2008–2013. [Google Scholar]
- Bronk, K.S.; Michael, K.L.; Pantano, P.; Walt, D.R. Combined imaging and chemical sensing using a single optical imaging fiber. Anal. Chem. 1995, 67, 2750–2757. [Google Scholar] [CrossRef] [PubMed]
- Michael, K.L.; Walt, D.R. Combined Imaging and Chemical Sensing of Fertilization-Induced Acid Release from Single Sea Urchin Eggs. Anal. Biochem. 1999, 273, 168–178. [Google Scholar] [CrossRef]
- Comizzoli, P.; Songsasen, N.; Wildt, D.E. Protecting and extending fertility for females of wild and endangered mammals. Cancer Treat. Res. 2010, 156, 87–100. [Google Scholar] [CrossRef] [Green Version]
- FitzHarris, G.; Baltz, J.M. Regulation of intracellular pH during oocyte growth and maturation in mammals. Reproduction 2009, 138, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savastru, D.; Chang, E.W.; Miclos, S.; Pitman, M.B.; Patel, A.; Iftimia, N. Detection of breast surgical margins with optical coherence tomography imaging: A concept evaluation study. J. Biomed. Opt. 2014, 19, 056001. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, R.A.; Scolaro, L.; Robbins, P.; Hamza, S.; Saunders, C.; Sampson, D.D. Imaging of human lymph nodes using optical coherence tomography: Potential for staging cancer. Cancer Res. 2010, 70, 2579–2584. [Google Scholar] [CrossRef] [Green Version]
- Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schartner, E.P.; Henderson, M.R.; Purdey, M.; Dhatrak, D.; Monro, T.M.; Gill, P.G.; Callen, D.F. Cancer Detection in Human Tissue Samples Using a Fiber-Tip pH Probe. Cancer Res. 2016, 76, 6795–6801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chato, J.C. Heat transfer to blood vessels. J. Biomech. Eng. 1980, 102, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Pahlevaninezhad, H.; Lee, A.M.D.; Hohert, G.; Lam, S.; Shaipanich, T.; Beaudoin, E.L.; MacAulay, C.; Boudoux, C.; Lane, P. Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks. Opt. Lett. 2016, 41, 3209–3212. [Google Scholar] [CrossRef] [PubMed]
- De Montigny, E.; Goulamhoussen, N.; Madore, W.j.; Strupler, M.; Gologan, O.E.; Ayad, T.; Boudoux, C. Tri-modal microscope for head and neck tissue identification. Biomed. Opt. Express 2016, 7, 732. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Saidi, A.; Jing, J.; Liu, G.; Li, J.; Zhang, J.; Sun, C.; Narula, J.; Chen, Z. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner. J. Biomed. Opt. 2012, 17, 070501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scolaro, L.; Lorenser, D.; Madore, W.J.; Kirk, R.W.; Kramer, A.S.; Yeoh, G.C.; Godbout, N.; Sampson, D.D.; Boudoux, C.; McLaughlin, R.A. Molecular imaging needles: Dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue. Biomed. Opt. Express 2015, 6, 1767–1781. [Google Scholar] [CrossRef] [Green Version]
- Boudoux, C. Fundamentals of Biomedical Optics; Blurb, Incorporated: San Francisco, CA, USA, 2016. [Google Scholar]
- Li, J.; Montarello, N.J.; Hoogendoorn, A.; Verjans, J.W.; Bursill, C.A.; Peter, K.; Nicholls, S.J.; McLaughlin, R.A.; Psaltis, P.J. Multimodality Intravascular Imaging of High-Risk Coronary Plaque. JACC Cardiovasc. Imaging 2022, 15, 145–159. [Google Scholar] [CrossRef]
- Lu, Y.; Abran, M.; Cloutier, G.; Lesage, F. Catheter-based time-gated near-infrared fluorescence/OCT imaging system. In Proceedings of the Diagnostic and Therapeutic Applications of Light in Cardiology, International Society for Optics and Photonics, SPIE, San Francisco, CA, USA, 27–28 January 2018; Volume 10471, pp. 1–7. [Google Scholar] [CrossRef]
- Guay-Lord, R.; Lurie, K.L.; Attendu, X.; Mageau, L.; Godbout, N.; Ellerbee Bowden, A.K.; Strupler, M.; Boudoux, C. Combined optical coherence tomography and hyper-spectral imaging using a double clad fiber coupler. J. Biomed. Opt. 2016, 21, 116008. [Google Scholar] [CrossRef] [Green Version]
- Post, A.L.; Faber, D.J.; Sterenborg, H.J.C.M.; van Leeuwen, T.G. Subdiffuse scattering and absorption model for single fiber reflectance spectroscopy. Biomed. Opt. Express 2020, 11, 6620. [Google Scholar] [CrossRef]
- Yu, L.; Wu, Y.; Dunn, J.F.; Murari, K. In-vivo monitoring of tissue oxygen saturation in deep brain structures using a single fiber optical system. Biomed. Opt. Express 2016, 7, 4685–4694. [Google Scholar] [CrossRef] [Green Version]
- Piao, D.; McKeirnan, K.; Jiang, Y.; Breshears, M.A.; Bartels, K.E. A low-cost needle-based single-fiber reflectance spectroscopy method to probe scattering changes associated with mineralization in intervertebral discs in chondrodystrophoid canine species—A pilot study: Untersuchung des Zusammenhangs zwischen Mineralis. Photonics Lasers Med. 2012, 1, 103–115. [Google Scholar] [CrossRef]
- Murari, K.; Zhang, Y.; Li, S.; Chen, Y.; Li, M.J.; Li, X. Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm. Opt. Lett. 2011, 36, 1299. [Google Scholar] [CrossRef]
- Perrillat-Bottonet, T.; Strupler, M.; Leduc, M.; Majeau, L.; Godbout, N.; Boudoux, C. All-fiber nonlinear microscopy at 1550 nm using a double-clad fiber coupler. In Proceedings of the SPIE 10069, Multiphoton Microscopy in the Biomedical Sciences XVII, San Francisco, CA, USA, 4 May 2017; Volume 10069, pp. 1–10. [Google Scholar] [CrossRef]
- Vega, D.; Sawyer, T.W.; Pham, N.Y.; Barton, J.K. Use of embedded and patterned dichroic surfaces with reflective optical power to enable multiple optical paths in a micro-objective. Appl. Opt. 2020, 59, G71–G78. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; McLaughlin, R.; Thiele, S.; Herkommer, A.; Gießen, P.H. An Optical Element. AU Patent 2020902567, 23 July 2020. [Google Scholar]
- Jiawen, L.; Simon, T.; Rodney, W.K.; Bryden, C.; Quirk, A.H.; Yung, C.C.; Karlheinz, P.; Stephen, J.; Nicholls, J.W.; Verjans, P.J.; et al. 3D-printed micro lens-in-lens for in vivo multimodal microendoscopy. Small, 2022; submitted. [Google Scholar]
- Etcheverry, S.; Faridi, A.; Ramachandraiah, H.; Kumar, T.; Margulis, W.; Laurell, F.; Russom, A. High performance micro-flow cytometer based on optical fibres. Sci. Rep. 2017, 7, 5628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Xia, L.; Li, W.; Chen, X.; Yang, Z.; Xia, J. All-fiber SERS sensing with a depressed double cladding fiber probe embedded in a microfluidic chip. Appl. Opt. 2019, 58, 7929–7934. [Google Scholar] [CrossRef] [PubMed]
- Etcheverry, S. Advanced All-Fiber Optofluidic Devices. Ph.D. Thesis, KTH—Royal Institute of Technology, Stockholm, Sweden, 14 November 2017. [Google Scholar]
- Li, J.; Ebendorff-Heidepriem, H.; Gibson, B.C.; Greentree, A.D.; Hutchinson, M.R.; Jia, P.; Kostecki, R.; Liu, G.; Orth, A.; Ploschner, M.; et al. Perspective: Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines. APL Photonics 2018, 3, 100902. [Google Scholar] [CrossRef]
- Pshenay-Severin, E.; Bae, H.; Reichwald, K.; Matz, G.; Bierlich, J.; Kobelke, J.; Lorenz, A.; Schwuchow, A.; Meyer-Zedler, T.; Schmitt, M.; et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light. Sci. Appl. 2021, 10, 207. [Google Scholar] [CrossRef]
- Héder, M. From NASA to EU: The evolution of the TRL scale in Public Sector Innovation. Innov. J. 2017, 22, 1–23. [Google Scholar]
- Olsovsky, C.; Hinsdale, T.; Cuenca, R.; Cheng, Y.S.L.; Wright, J.M.; Rees, T.D.; Jo, J.A.; Maitland, K.C.; Olsovsky, C.; Hinsdale, T.; et al. Handheld tunable focus confocal microscope utilizing a double-clad fiber coupler for in vivo imaging of oral epithelium utilizing a double-clad fiber coupler for in vivo. J. Biomed. Opt. 2017, 22, 056008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, A.; Gemert, M.V. Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed.; Springer: Dordrecht, The Netherlands, 2011; p. 951. [Google Scholar]
- Johnston, M.H. Technology insight: Ablative techniques for Barrett’s esophagus—Current and emerging trends. Nat. Clin. Pract. Gastroenterol. Hepatol. 2005, 2, 323–330. [Google Scholar] [CrossRef]
- Lo, W.C.Y.; Uribe-Patarroyo, N.; Nam, A.S.; Villiger, M.; Vakoc, B.J.; Bouma, B.E. Laser thermal therapy monitoring using complex differential variance in optical coherence tomography. J. Biophotonics 2016, 10, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Lo, W.C.Y.; Uribe-Patarroyo, N.; Hoebel, K.; Beaudette, K.; Villiger, M.; Nishioka, N.S.; Vakoc, B.J.; Bouma, B.E. Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography. Biomed. Opt. Express 2019, 10, 2067–2089. [Google Scholar] [CrossRef] [PubMed]
- Maltais-Tariant, R.; Boudoux, C.; Uribe-Patarroyo, N. Real-time co-localized OCT surveillance of laser therapy using motion corrected speckle decorrelation. Biomed. Opt. Express 2020, 11, 2925–2950. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Duan, Y. Optical fiber-based evanescent ammonia sensor. Sens. Actuators B Chem. 2005, 110, 252–259. [Google Scholar] [CrossRef]
- Tan, A.J.Y.; Ng, S.M.; Stoddart, P.R.; Chua, H.S. Trends and Applications of U-Shaped Fiber Optic Sensors: A Review. IEEE Sens. J. 2021, 21, 120–131. [Google Scholar] [CrossRef]
- Lu, X.; Thomas, P.J.; Hellevang, J.O. A Review of Methods for Fibre-Optic Distributed Chemical Sensing. Sensors 2019, 19, 2876. [Google Scholar] [CrossRef] [Green Version]
Combined Imaging Modalities | Results | Probe Design | Ref |
---|---|---|---|
Multiscale, Multispectral FLIm | Ex vivo imaging of tissue autofluorescence. | Monolithic all-fiber probe with GRIN lens | [10] |
OCT + SFR | Improved morphological and molecular information imaging. | Benchtop reflective scanner head | [11] |
OCT + NIRF | In situ imaging of a tumor in a xenograft mouse model of human colorectal cancer. | Micro-motor-based with GRIN lens | [35] |
In vivo colorectal cancer detection through identification and differentiation of normal colon and colon polyps. | Micro-motor-based with GRIN lens | [36] | |
OCT + FLIm | Ex vivo intravascular imaging and biochemical information capture at atherosclerotic plaques in arteries. | Monolithic ball lens- based probe with proximal rotary joint | [41] |
Ex vivo structural imaging and compositional contrast in unlabeled biological samples. | Monolithic all-fiber probe with GRIN lens | [60] | |
OCT + Fluorescence | Plug and play endomicroscopy system for gastrointestinal track imaging. | Tethered capsule with micro-motor and ball lens. | [42] |
High speed in vivo imaging of architectural morphology and vasculature of the rectum wall of a rat. | Micro-motor-based with GRIN lens | [61] | |
OCT + Autofluorescence | In vivo imaging of needle biopsy placement in lungs. | Monolithic needle probe with proximal rotary joint | [62] |
OCT + Autofluorescence + SFR | In vivo sub-millimeter diameter probe for luminal organ imaging at 25 m resolution. | Monolithic probe with rotary joint | [63] |
OCT + MSI | Model and implementation of depth resolved spectrally sparse color imaging for deep organ structures. | All-fiber benchtop microscope | [64] |
OCT + Reflectance + Multiphoton | High fidelity ex vivo tissue imaging. | Benchtop multimodal scanning optical microscope | [65] |
OCT + SER | High-speed in vivo imaging of human retina at 2 gigapixels per second with micron spatial and millisecond temporal resolution. | Discrete optics benchtop microscope | [66] |
Imaging Modality | Second Modality | Results | Probe Design | Ref |
---|---|---|---|---|
OCT | Laser coagulation | Radiometric model for optimized imaging and sensing modalities in DCF probe. | Monolithic all-fiber needle probe with GRIN lens | [23] |
OCT | pH | Ex vivo imaging and pH detection in biological tissue with accuracy of 0.01 pH unit. | Monolithic all-fiber needle probe with GRIN lens | [27] |
Imaging and pH change monitoring of lactic acid producing oocytes. | Monolithic all-fiber probe with GRIN lens and silk coating | [47] | ||
OCT | Temperature | Ex vivo imaging and temperature sensing of rat brain. | Monolithic needle probe rare- earth doped glass lens. | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaudette, K.; Li, J.; Lamarre, J.; Majeau, L.; Boudoux, C. Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. Biosensors 2022, 12, 90. https://doi.org/10.3390/bios12020090
Beaudette K, Li J, Lamarre J, Majeau L, Boudoux C. Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. Biosensors. 2022; 12(2):90. https://doi.org/10.3390/bios12020090
Chicago/Turabian StyleBeaudette, Kathy, Jiawen Li, Joseph Lamarre, Lucas Majeau, and Caroline Boudoux. 2022. "Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications" Biosensors 12, no. 2: 90. https://doi.org/10.3390/bios12020090
APA StyleBeaudette, K., Li, J., Lamarre, J., Majeau, L., & Boudoux, C. (2022). Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. Biosensors, 12(2), 90. https://doi.org/10.3390/bios12020090