Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection
Abstract
:1. Introduction
- Type 1 diabetes (T1DM): Related to autoimmune β-cell destruction, commonly leading to absolute insulin deficiency.
- Type 2 diabetes (T2DM): Caused by a progressive loss of adequate β-cell insulin secretion, usually on the background of insulin resistance.
- Gestational DM: High glucose levels diagnosed in the second or third trimester of pregnancy without having a prior diabetic history.
- Other specific types of diabetes, e.g., monogenic diabetes syndromes, diseases of the exocrine pancreas, and drug- or chemical-induced diabetes.
2. Glucose Sensing: Mechanisms for Enzymatic and Non-Enzymatic Detection
2.1. Mechanisms for Glucose Detection
2.1.1. First-Generation Biosensors
2.1.2. Second-Generation Biosensors
2.1.3. Third-Generation Biosensors
2.1.4. Non-Enzymatic Glucose Sensors (Fourth Generation)
3. Polyaniline for Glucose Sensors
3.1. PAni Structure
3.2. Conductivity
3.3. PAni as Matrix Enzyme Immobilization
3.4. Biocompatibility for Implantable Devices
4. Polyaniline Based-Enzymatic Glucose Devices
4.1. PAni-Based Glucose Biosensors
4.2. PAni-Based Implantable Glucose Biosensors
Gen | Material | Immob. Method | Polymerization | Technique | Linear Range | Sensitivity μA·mM−1·cm−2 | LOD μM | Sample | Stability | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
3rd | TiO2/PAni | entrapment in chitosan | vapor phase polymerization | AMP | 20–140 μM | 163.14 | 5.33 | - | - | [84] |
PAni-CoC2O4 | covalent bonding | COP | AMP/ DPV | 3–13 mM | 0.099 * | 94 | - | - | [85] | |
PAni/MWCNT/AuNPs | entrapment in chitosan | - | AMP | 0.063–1.19 mM | 29.17 | 0.21 | serum | - | [57] | |
PAni/activated carbon/TiO2 | crosslinking | COP | AMP | 0.02–6.0 mM | - | 18 | - | - | [86] | |
PAni microtubes | electrostatic attraction | in situ polymerization | AMP | 4–800 μM | 35.42 | 0.8 | serum | - | [68] | |
PAni/TiO2 NT | entrapment | COP | DPV | 10–2500 μM | 11.4 * | 0.5 | - | 2 months | [81] | |
PAni-PVP-AuNPs/GOx/Nafion | physical absorption | ECP | AMP | 0.05–2.25 mM | 9.62 | 10 | serum | 2 weeks | [75] | |
PAniNW/rGO | electrostatic interaction | galvanostatic polymerization | AMP | 0.1–8.5 mM | 12.3 | 0.1 | - | 25 days | [87] | |
2nd | PAni/rGO | crosslinking | interfacial polymerization | AMP | 0.5–50 mM | 2.8* | 89 | serum | 8 days | [73] |
PAni | EC entrapment | ECP | potentio metric | 0.1–100 mM | 14.6 mV/ decade | - | - | - | [88] | |
PAni | EC entrapment | ECP | EIS | 0.1–100 mM | 7.4%/ decade | 0.98 | - | - | [89] | |
PAA-VS-PAni/GPL-FePc | crosslinking | COP | AMP | 1–20 mM | 18.11 | 6.4 | serum | - | [90] | |
SiO2-LuPc2/PAni-PVIA-CNB | crosslinking | COP | AMP | 1–16 mM | 38.53 | 1000 | serum | 45 days | [91] | |
PAA-rGO/VSPAni/LuPc2 | crosslinking | free-radical polymerization | AMP | 1–12 mM | 15.31 | 25 | serum | 3 months | [59] | |
PAni/PEO | physical absorption | rapid mixing polymerization | AMP | 1–10 mM | 16.04 | 820 | - | 15 days | [78] | |
PAni/poly(acrylic acid) | physical absorption | ECP | AMP | up to 40 mM | - | - | - | - | [79] | |
1st | PAni/AuNPs | crosslinking | COP | AMP | up to 16.5 mM | 65.4 | 70 | serum | 22 days | [92] |
PAniHF/PtNPs | crosslinking | in situ polymerization | AMP | 0–24 mM | 35 ** | - | blood | 7 days | [77] | |
PAni | potentiostatic entrapment | ECP | AMP | 0.01–0.1 M | - | - | - | - | [93] | |
NH2-MWCNT/rGO/PAni/ AuNPs | physical absorption | COP | AMP | 1–10 mM | 246 | 64 | Blood serum | 30 days | [58] | |
PAni-CNT | covalent bonding | ECP | DPV | 2–426 μM | 620 | 1.1 | Blood plasma | 45 days | [94] | |
PAni-Montmonirollite-PtNPs | entrapment in chitosan | ECP | AMP | 0.01–1.94 mM | 35.56 | 0.1 | blood serum | 40 days | [60] | |
PB doped ink/PAni/GOx/PU | physical absorption | COP | AMP | 0–12 mM | 16.66 | - | in vivo | 14 days | [83] | |
Graphene/PAni-co-PDPA | physical absorption | interfacial polymerization | AMP | 1–10 μM | 0.51 * | 0.1 | serum | 20 days | [64] | |
PAN/PAni/Graphene | entrapment in chitosan | COP | AMP | 0.01–1.97 mM | 29.11 | 2.10 | penicillium | 1 month | [61] | |
PAni/SnO2NF | entrapment in chitosan | COP | AMP | 5–100 μM | - | 1.8 | urine | 60 days | [56] | |
PAni-SDS-F127 | crosslinking | in situ polymerization | AMP | 5–50 mM | 485.787 | 3.202 | - | - | [80] | |
PAni/PAA | covalent bonding | ECP | AMP | 0–16 mM | 49.3 | 26.5 | - | - | [95] | |
PAni/SnO2@3D-rGO | physical absorption | plasma polymerization | AMP | 0.56 nM–270 μM | - | 0.26 nM | serum | 1 month | [63] | |
PAni-g-PEG | crosslinking | COP/Click chemistry | AMP | 0.05−1.0 mM | 47.72 | 20 | - | 20 days | [71] | |
PaniNFW/nanodiamond | crosslinking | graft polymerization | AMP | 1–30 mM | 2.03 * | 18 | serum | 30 days | [70] | |
PAniNFs/GOx/PU/E-PU | crosslinking | ECP | AMP | 0–20 mM | 63 ** | - | in vivo | 14 days | [82] | |
MWCNT-COOH/PAni | covalent bonding | COP | FET | 0.005–500 mM | - | 0.5 | serum | 1 week | [96] | |
MWCNT/Au NPs/PAni | physical absorption | in situ polymerization | CV | 2–12 mM | 12.73 | - | - | 2 days | [97] | |
4-amino thiophenol/Au NPs/GOx–HRP/6-mercapto-1-hexanol-11-mercaptoundecanoic acid/Au | covalent bonding | enzymatic polymerization | AMP | 0.0165–10.0 mM | 41.78 | 5.4 | serum | 10 days | [98] | |
Graphene/PAni | entrapment in chitosan | ECP | AMP | 0.01–1.48 mM | 22.1 | 2.769 | plasma | - | [72] | |
3D PB/PAni/MWCNT | crosslinking | COP | AMP | 0.05–4 mM | - | 40 | in vivo | 1 h | [99] | |
AuNPs/PAni-Pt NPs/GOx/PVDF-Nafion | EC entrapment | ECP | AMP | 0–20 mM | 0.23 * | - | in vivo | 21 days | [76] | |
PB/IL-PAni/MWCNT | entrapment in chitosan | ECP | AMP | 0.0125–1.75 mM | 94.79 | 1.1 | serum | - | [62] | |
PAni/k-carrageenan | physical absorption | COP | DPV | 1–15 mM | 0.86 | - | - | - | [100] |
5. Polyaniline-Based Non-Enzymatic Glucose Sensor
Material Electrode | Polymerization | Technique | Solution-pH | Linear Range | Sensitivity | LOD | Ref. |
---|---|---|---|---|---|---|---|
CPAniNS 1 | COP | AMP | 0.1 M H2SO4 | 1–1000 µM | 2003.5 µA·mM−1·cm−2 | 0.043 µM | [107] |
PAni/BioHAP/AgHg 2 | COP | AMP | 0.1 M PBS-7.4 | 1.0–10.0 mM | - | 1.0 mM | [108] |
NCa-PAni NWs 3 | ECP | LSV 4 | 0.1 M PBS-7 | 10–120 µM | 156.4 µA·mM−1·cm−2 | 0.657 µM | [102] |
Material Electrode | Polymerization | Technique | Electrolyte | Linear Range | Sensitivity | LOD | Sample | Ref. |
---|---|---|---|---|---|---|---|---|
NiNPs/PAni | ECP | AMP | 0.1 M NaOH | 0.02–1 mM | 278.8 µA·mM−1·cm−2 | 1 µM | - | [109] |
CuNPs-Halloysite NT/PAni | COP | AMP | 0.1 M NaOH | 0.01–0.1; 0.1–0.5 mM | 434.0; 57.7 µA·mM−1·cm−2 | 0.27 μM | - | [110] |
PAni/Cd stannate/CHIT | COP | AMP | 0.1 M NaOH | 0.0005–0.01 M 0.01–0.5 M | 5.23 µA·mM−1·cm−2; 1.32 µA·mM−1·cm−2 | 0.03 mM and 0.5 mM | - | [111] |
NiFeNPs/PAni | COP | AMP | 0.1 M NaOH | 0.02–1 mM | 1050 µA·mM−1·cm−2 | 0.5 μM | - | [112] |
Polyacrilonitrile/ PAni/CuO | - | AMP | 0.1 M NaOH | 100 μM–3 mM | 360 µA·mM−1·cm−2 | 1.2 μM | - | [113] |
AuNPs-TiO2/PAni | ECP | AMP | 0.1 M NaOH | 0.01–10 mM | 379.8 µA·mM−1·cm−2 | 0.15 μM | - | [114] |
NiO/PAni | COP | AMP | 0.1 M NaOH | 0–100 μM | 606.13 µA·mM−1·cm−2 | 0.19 µM | serum | [115] |
NiONPs@PAniNS 1 | COP | AMP | 0.1 M NaOH | 1–3000 μM | 5625 µA·mM−1·cm−2 | 0.06 μM | serum | [116] |
PdNW/3D-PAni | COP | AMP | 0.1 M NaOH | 5–9800 μM | 146.6 µA·mM−1·cm−2 | 0.7 μM | serum | [117] |
AuNPs-TiO2/PAni | ECP | AMP | 0.1 M NaOH | 0.01–8 mM | 313.6 µA·mM−1·cm−2 | 0.15 μM | - | [118] |
PAni/Ag nanoleaf | ECP | CV/AMP | 0.1 M PBS | 1–8 mM | 4.3124 µA·mM−1·cm−2 | 0.06 μM | - | [119] |
Cu–PAni | ECP | AMP | 0.1 M NaOH | 20 µM–1 mM | 4140 µA·mM−1·cm−2 | 5 µM | - | [120] |
Ni-SnOx/PAni/ CuO- cotton | COP | AMP | 0.1 M NaOH | 0.001–1; 1–10 mM | 1625; 1325 µA·mM−1·cm−2 | 130 nM | - | [121] |
Co3O4@PAniNFs | COP | AMP | 0.1 M PBS | 0.1–8 mM | 14.25 µA·mM−1·cm−2 | 0.06 mM | serum | [104] |
PAni/NiF 2 | COP | AMP | 0.10 M LiOH | 1.0 μM–20 mM | 237 µA·mM−1·cm−2 | - | - | [122] |
Hollow CuO/PAni NHFs 3 | COP | AMP | 0.1 M NaOH | 0.001–19.899 | - | 0.45 µM | - | [123] |
PAni@CuNi | inverse emulsion polymerization | AMP | 0.1 M NaOH | 0.1 to 5.6 mM | 1030 µA·mM−1·cm−2 | 0.2 µM | serum | [103] |
CuO/PAniNFs | COP | AMP | 0.1 M NaOH | 0.25 μM–0.28 mM; 0.28–4.6 mM | 280; 1359 µA·mM−1·cm−2 | 0.24 μM | - | [124] |
NiO/CuO/PAni | ECP | AMP | 0.1 M NaOH | 20–2500 µM | - | 2 μM | serum | [125] |
NiCo2O4@PAni | COP | AMP | 0.1 M NaOH | 0.015–4.7350 mM | 4.55 mA·mM−1·cm−2 | 0.3833 μM | - | [126] |
PAni/AuNPs | - | EIS | 5 mM K3[Fe(CN)6]/0.1 M PBS | 0.3–10 mM | - | 0.1 mM | - | [127] |
Material Electrode | Polymerization | Technique | Electrolyte | Linear Range | Sensitivity | LOD | Sample | Ref. |
---|---|---|---|---|---|---|---|---|
ZnCo2O4/g-C3N4/Pani 1 | COP | AMP | - | 0.1–3 mM | 15.64 mA·mM−1·cm−2 | 4 μM | - | [128] |
PLA/GR/PAni/Cu | ECP | AMP | 0.1 M KOH | 1–7 mmol·L−1 | - | 49.3 mmol·L−1 | - | [129] |
CuNWs/PAni/rGO | - | - | - | 0–4 mM | 843.06 µA·mM−1·cm−2 | 1.6 mM | - | [130] |
Cu+2/PAni/rGO ink | COP | AMP | 0.1 M NaOH | 2.8–22.2 µM; 0–4 mM | 4168.37; 525.4 µA·mM−1·cm−2 | 4.93 µM | serum | [131] |
PAniNS@rGO | COP | AMP | 0.1 M NaOH | 1–10 mM | 3448.27 mA·mM−1·cm−2 | 30 nM | - | [107] |
TiO2–rGO–PAni | COP | LSV | 0.1 M NaOH | 10–180 μM | - | 7.46 μM | - | [132] |
PAni/rGO/CuO | ECP | AMP | 0.1 M NaOH | 0–13 mM | 1252 µA·mM−1·cm−2 | 1.5 μM | blood serum | [105] |
PAni/ZnO/MWCNT | ECP | LSV | 10 mM NaOH | 0.1–1; 1–6 mM | 7.8307; 1.6731 µA·mM−1·cm−2 | 0.1 μM | - | [133] |
fGO/Fe3O4/PAni 2 | COP | CV | PBS | 0.05 μM–5 mM | - | 0.01 μM | serum | [134] |
NiCo2S4/rGO@PAni | COP | AMP | 0.1 M NaOH | 1–7000 μM | 4.924 µA·µM−1·cm−2 | 0.14 μM | serum | [135] |
NiO/Au/PAni/rGO | ECP | AMP | 0.1 M NaOH | 0.09–6 mM | - | 0.23 μM | serum | [136] |
AuNPs/PAni | ECP | CV | 0.5 M KOH | 10.26 μM–10.0 mM | 150 μA·cm−2·mM −1 | 3.08 μM | serum | [137] |
PAni/CeO2 nanorods | - | AMP | 0.1 M KCl | Up to 0.6 mM | 25.79 µA·mM−1·cm−2 | 0.56 μM | - | [138] |
CuNPs/PAni/graphene | COP | AMP | 0.1 M NaOH | 0.001–3.7 mM | 150 mA·cm−2·M−1 | 0.27 μM | mice serum | [139] |
G-PAni(COOH)-PEI-Fc/Cu-MCNB | COP | DPV | 0.01 M PBS | 0.50–14 mM | 14.3 µA·mM−1·cm−2 | 0.16 mM | serum | [106] |
NiONPs/PAniNW/GO | ECP | AMP | 0.1 M NaOH | 2 μM–5.560 mM | 376.22 µA·mM−1·cm−2 | 0.5 μM | bovine serum | [140] |
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association. Introduction: Standards of Medical Care in Diabetes-2020. Diabetes Care 2022, 45 (Suppl. 1), S1–S2. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; Brussels, Belgium, 2021. Available online: https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf (accessed on 13 January 2022).
- Rubinstein, I. Voltammetric PH Measurements with Surface-Modified Electrodes and a Voltammetric Internal Reference. Anal. Chem. 1984, 56, 1135–1137. [Google Scholar] [CrossRef]
- Shinohara, H.; Chiba, T.; Aizawa, M. Enzyme Microsensor for Glucose with an Electrochemically Synthesized Enzyme-Polyaniline Film. Sens. Actuators 1988, 13, 79–86. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Taguchi, M.; Ptitsyn, A.; McLamore, E.S.; Claussen, J.C. Nanomaterial-Mediated Biosensors for Monitoring Glucose. J. Diabetes Sci. Technol. 2014, 8, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A.J.; Xie, H.; Moussy, F.; Milne, W.I. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene. Sensors 2012, 12, 5996–6022. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.B.; Kim, H.S.; Jeon, W.Y.; Lee, B.H.; Shin, U.S.; Kim, H.H. The Electrochemical Glucose Sensing Based on the Chitosan-Carbon Nanotube Hybrid. Biochem. Eng. J. 2019, 144, 227–234. [Google Scholar] [CrossRef]
- Dong, Q.; Ryu, H.; Lei, Y. Metal Oxide Based Non-Enzymatic Electrochemical Sensors for Glucose Detection. Electrochim. Acta 2021, 370, 13774. [Google Scholar] [CrossRef]
- Lakard, B. Electrochemical Biosensors Based on Conducting Polymers: A Review. Appl. Sci. 2020, 10, 6614. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Conductive Polymer-Based Sensors for Biomedical Applications. Biosens. Bioelectron. 2011, 15, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ran, R.; Yang, Z.; Lv, R.; Shen, W.; Kang, F.; Huang, Z.H. An Efficient Flexible Electrochemical Glucose Sensor Based on Carbon Nanotubes/Carbonized Silk Fabrics Decorated with Pt Microspheres. Sens. Actuators B Chem. 2018, 256, 63–70. [Google Scholar] [CrossRef]
- Cass, A.E.G.; Davis, G.; Francis, G.D.; Hill, H.A. Determination of Glucose. Anal. Chem. 1984, 56, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Tsujimura, S.; Kojima, S.; Kano, K.; Ikeda, T.; Sato, M.; Sanada, H.; Omura, H. Novel FAD-Dependent Glucose Dehydrogenase for a Dioxygen-Insensitive Glucose Biosensor. Biosci. Biotechnol. Biochem. 2006, 70, 654–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loughran, M.G.; Hall, J.M.; Turner, A.P.F. Development of a Pyrroloquinoline Quinone (PQQ) Mediated Glucose Oxidase Enzyme Electrode for Detection of Glucose in Fruit Juice. Electroanalysis 1996, 8, 870–875. [Google Scholar] [CrossRef]
- Kenausis, G.; Taylor, C.; Katakis, I.; Heller, A. “Wiring” of Glucose Oxidase and Lactate Oxidase within a Hydrogel Made with Poly(Vinyl Pyridine) Complexed with [Os(4,4′-Dimethoxy-2,2′-Bipyridine)2Cl]+/2+. J. Chem. Soc.—Faraday Trans. 1996, 92, 4131–4136. [Google Scholar] [CrossRef]
- Nakabayashi, Y.; Omayu, A.; Yagi, S.; Nakamura, K.; Motonaka, J. Evaluation of Osmium(II) Complexes as Electron Transfer Mediators Accessible for Amperometric Glucose Sensors. Anal. Sci. 2001, 17, 945–9590. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, K.; Bennett, R.; Leech, D. Electrochemical Glucose Biosensor Based on an Osmium Redox Polymer and Glucose Oxidase Grafted to Carbon Nanotubes: A Design-of-Experiments Optimisation of Current Density and Stability. Electrochim. Acta 2021, 371, 137845. [Google Scholar] [CrossRef]
- Arslan, F.; Beskan, U. An Amperometric Biosensor for Glucose Detection from Glucose Oxidase Immobilized in Polyaniline-Polyvinylsulfonate-Potassium Ferricyanide Film. Artif. Cells Nanomed. Biotechnol. 2014, 42, 284–288. [Google Scholar] [CrossRef]
- Kawaguri, M.; Yoshioka, T.; Nankai, S. Disposable Glucose Sensor Employing Potassium Ferricyanide as a Mediator. Electrochem. Soc. Jpn. 1990, 58, 1119–1124. [Google Scholar] [CrossRef]
- Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, A.; Feldman, B. Electrochemistry in Diabetes Management. Acc. Chem. Res. 2010, 43, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.J.; Li, C.M.; Zang, J.F.; Cui, X.Q.; Qiao, Y.; Guo, J. New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications. Adv. Funct. Mater. 2008, 18, 591–599. [Google Scholar] [CrossRef]
- Guo, C.X.; Li, C.M. Direct Electron Transfer of Glucose Oxidase and Biosensing of Glucose on Hollow Sphere-Nanostructured Conducting Polymer/Metal Oxide Composite. Phys. Chem. Chem. Phys. 2010, 12, 12153–12159. [Google Scholar] [CrossRef] [PubMed]
- Diouf, A.; Bouchikhi, B.; el Bari, N. A Nonenzymatic Electrochemical Glucose Sensor Based on Molecularly Imprinted Polymer and Its Application in Measuring Saliva Glucose. Mater. Sci. Eng. C 2019, 98, 1196–1209. [Google Scholar] [CrossRef] [PubMed]
- Caldara, M.; Lowdon, J.W.; Rogosic, R.; Arreguin-Campos, R.; Jimenez-Monroy, K.L.; Heidt, B.; Tschulik, K.; Cleij, T.J.; Diliën, H.; Eersels, K.; et al. Thermal Detection of Glucose in Urine Using a Molecularly Imprinted Polymer as a Recognition Element. ACS Sens. 2021, 6, 4515–4525. [Google Scholar] [CrossRef] [PubMed]
- Pletcher, D. Electrocatalysis: Present and Future. J. Appl. Electrochem 1984, 14, 403–415. [Google Scholar] [CrossRef]
- Adzic, R.R.; Hsiao, M.W.; Yeager, E.B. Electrochemical Oxidation of Glucose on Single Crystal Gold Surfaces. J. Electroanal. Chem. 1989, 260, 475–585. [Google Scholar] [CrossRef]
- Burke, L.D. Premonolayer Oxidation and Its Role in Electrocatalysis. Electrochim. Acta 1994, 39, 1841–1848. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Chaubey, A.; Singh, S.P. Prospects of Conducting Polymers in Biosensors. Anal. Chim. Acta 2006, 578, 59–74. [Google Scholar] [CrossRef]
- Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, L.; Li, L.; Cheng, W.; Xu, L.; Ping, X.; Pan, L.; Shi, Y. Conducting Polymers and Their Applications in Diabetes Management. Sensors 2016, 16, 1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, J.C.; MacDiarmid, A.G. “Polyaniline”: Protonic Acid Doping of the Emeraldine Form to the Metallic Regime. Synth. Met. 1986, 13, 193–205. [Google Scholar] [CrossRef]
- Huang, W.S.; Humphrey, B.D.; MacDiarmid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc. Faraday Trans. 1 1986, 82, 2385–2400. [Google Scholar] [CrossRef]
- Stafström, S.; Brédas, J.L.; Epstein, A.J.; Woo, H.S.; Tanner, D.B.; Huang, W.S.; MacDiarmid, A.G. Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies. Phys. Rev. Lett. 1987, 59, 1464–1467. [Google Scholar] [CrossRef]
- Kang, E.T.; Neoh, K.G.; Tan, K.L. Polyaniline: A Polymer with Many Intrinsic Redox States. Prog. Polym. Sci. 1998, 23, 277–324. [Google Scholar] [CrossRef]
- Molapo, K.M.; Ndangili, P.M.; Ajayi, R.F.; Mbambisa, G.; Mailu, S.M.; Njomo, N.; Masikini, M.; Baker, P.; Iwuoha, E.I. Electronics of Conjugated Polymers (I): Polyaniline. Int. J. Electrochem. Sci. 2012, 7, 11859–11875. [Google Scholar]
- Kirova, N. Understanding Excitons in Optically Active Polymers. Polym. Int. 2008, 57, 678–688. [Google Scholar] [CrossRef]
- Catedral, M.D.; Tapia, A.K.G.; Sarmago, R.V.; Tamayo, J.P.; del Rosario, E.J. Effect of Dopant Ions on the Electrical Conductivity and Microstructure of Polyaniline (Emeraldine Salt). Sci. Diliman 2004, 16, 41–46. [Google Scholar]
- Canales, M.; Torras, J.; Fabregat, G.; Meneguzzi, A.; Alemán, C. Polyaniline Emeraldine Salt in the Amorphous Solid State: Polaron versus Bipolaron. J. Phys. Chem. B 2014, 118, 11552–11562. [Google Scholar] [CrossRef]
- Monkman, A.P.; Bloor, D.; Stevens, G.C.; Stevens, J.C.H. Electronic Energy Levels of Polyaniline. J. Phys. D Appl. Phys. 1987, 20, 1337–1345. [Google Scholar] [CrossRef]
- Scotto, J.; Florit, M.I.; Posadas, D. About the Species Formed during the Electrochemical Half Oxidation of Polyaniline: Polaron-Bipolaron Equilibrium. Electrochim. Acta 2018, 268, 187–194. [Google Scholar] [CrossRef]
- Macdiarmid, A.G.; Chiang, J.C.; Richter, A.F.; Epstein, A.J. Polyaniline: A New Concept in Conducting Polymers. Synth. Met. 1987, 18, 285–290. [Google Scholar] [CrossRef]
- Mu, S.; Xue, H. Bioelectrochemical Characteristics of Glucose Oxidase Immobilized in a Polyaniline Film. Sens. Actuators B Chem. 1996, 31, 155–160. [Google Scholar] [CrossRef]
- Yan, W.; Feng, X.; Chen, X.; Hou, W.; Zhu, J.J. A Super Highly Sensitive Glucose Biosensor Based on Au Nanoparticles-AgCl @polyaniline Hybrid Material. Biosens. Bioelectron. 2008, 23, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wu, X.; Cai, C. Polyaniline Nanofibers: Synthesis, Characterization, and Application to Direct Electron Transfer of Glucose Oxidase. J. Phys. Chem. C 2009, 113, 4987–4996. [Google Scholar] [CrossRef]
- Zaks, A.; Klibanov, A.M. Enzymatic Catalysis in Nonaqueous Solvents. J. Biol. Chem. 1988, 263, 3194–3201. [Google Scholar] [CrossRef]
- Lukachova, L.V.; Karyakin, A.A.; Karyakina, E.E.; Gorton, L. The Improvement of Polyaniline Glucose Biosensor Stability Using Enzyme Immobilization from Water-Organic Mixtures with a High Content of Organic Solvent. Sens. Actuators B Chem. 1997, 44, 356–360. [Google Scholar] [CrossRef]
- Andrade, J.D.; Herron, J.; Lin, J.N.; Yen, H.; Kopecek, J.; Kopeckova, P. On-Line Sensors for Coagulation Proteins: Concept and Progress Report. Biomaterials 1988, 9, 76–79. [Google Scholar] [CrossRef]
- Turner, R.F.B.; Harrison, D.J.; Rajotte, R.V.; Baltes, H.P. A Biocompatible Enzyme Electrode for Continuous in Vivo Glucose Monitoring in Whole Blood. Sens. Actuators B. Chem. 1990, 1, 561–564. [Google Scholar] [CrossRef]
- Rolfe, P. In Vivo Chemical Sensors for Intensive-Care Monitoring. Med. Biol. Eng. Comput. 1990, 28, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.H.; Liu, Z.; Liu, C.; Yu, T.; Shang, T.; Huang, C.; Zhou, M.; Liu, C.; Ran, F.; Li, Y.; et al. Evaluation of in Vitro and in Vivo Biocompatibility of a Myo-Inositol Hexakisphosphate Gelated Polyaniline Hydrogel in a Rat Model. Sci. Rep. 2016, 6, 23931. [Google Scholar] [CrossRef]
- Humpolicek, P.; Kasparkova, V.; Saha, P.; Stejskal, J. Biocompatibility of Polyaniline. Synth. Met. 2012, 162, 722–727. [Google Scholar] [CrossRef]
- Kašpárková, V.; Humpoliček, P.; Stejskal, J.; Capáková, Z.; Bober, P.; Skopalová, K.; Lehocký, M. Exploring the Critical Factors Limiting Polyaniline Biocompatibility. Polymers 2019, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Alim, S.; Kafi, A.K.M.; Rajan, J.; Yusoff, M.M. Application of Polymerized Multiporous Nanofiber of SnO2 for Designing a Bienzyme Glucose Biosensor Based on HRP/GOx. Int. J. Biol. Macromol. 2019, 123, 1028–1034. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Du, X.; Li, Y.; Tang, W. A Highly Sensitive Glucose Sensor Based on a Gold Nanoparticles/Polyaniline/Multi-Walled Carbon Nanotubes Composite Modified Glassy Carbon Electrode. New J. Chem. 2018, 42, 11944–11953. [Google Scholar] [CrossRef]
- Maity, D.; Minitha, C.R.; Rajendra, R.K. Glucose Oxidase Immobilized Amine Terminated Multiwall Carbon Nanotubes/Reduced Graphene Oxide/Polyaniline/Gold Nanoparticles Modified Screen-Printed Carbon Electrode for Highly Sensitive Amperometric Glucose Detection. Mater. Sci. Eng. C 2019, 105, 110075. [Google Scholar] [CrossRef]
- Al-Sagur, H.; Komathi, S.; Khan, M.A.; Gurek, A.G.; Hassan, A. A Novel Glucose Sensor Using Lutetium Phthalocyanine as Redox Mediator in Reduced Graphene Oxide Conducting Polymer Multifunctional Hydrogel. Biosens. Bioelectron. 2017, 92, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, M.; Yan, Z.; Chen, J. Highly Selective and Stable Glucose Biosensor Based on Incorporation of Platinum Nanoparticles into Polyaniline-Montmorillonite Hybrid Composites. Microchem. J. 2020, 152, 104266. [Google Scholar] [CrossRef]
- Yan, Z.; Zheng, H.; Chen, J.; Ye, Y. The Micro Network of Polyacrylonitrile (PAN)-Polyaniline (Pani)-Graphene (GRA) Hybrid Nanocomposites for Effective Electrochemical Detection of Glucose and Improved Stability. Int. J. Electrochem. Sci. 2019, 14, 3011–3023. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, S.G.; Xu, H.H.; Wang, L.W. High-Sensitive Glucose Biosensor Based on Ionic Liquid Doped Polyaniline/Prussian Blue Composite Film. Chin. J. Chem. Phys. 2015, 28, 755–761. [Google Scholar] [CrossRef]
- Wu, S.; Su, F.; Dong, X.; Ma, C.; Pang, L.; Peng, D.; Wang, M.; He, L.; Zhang, Z. Development of Glucose Biosensors Based on Plasma Polymerization-Assisted Nanocomposites of Polyaniline, Tin Oxide, and Three-Dimensional Reduced Graphene Oxide. Appl. Surf. Sci. 2017, 401, 262–270. [Google Scholar] [CrossRef]
- Muthusankar, E.; Ragupathy, D. Graphene/Poly(Aniline-Co-Diphenylamine) Nanohybrid for Ultrasensitive Electrochemical Glucose Sensor. Nano-Struct. Nano-Objects 2019, 20, 100390. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Yi, Y.; Zhu, P.; Shen, J.; Wu, K.; Zhang, L.; Liu, J. Polyaniline-Based Glucose Biosensor: A Review. J. Electroanal. Chem. 2016, 782, 138–153. [Google Scholar] [CrossRef]
- Dhand, C.; Das, M.; Datta, M.; Malhotra, B.D. Recent Advances in Polyaniline Based Biosensors. Biosens. Bioelectron. 2011, 26, 2811–2821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, C.; Luo, J.; Long, Y.; Wang, C.; Yu, T.; Xiao, D. A Polyaniline Microtube Platform for Direct Electron Transfer of Glucose Oxidase and Biosensing Applications. J. Mater. Chem. B 2015, 3, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.M.; Aggas, J.R.; Guiseppi-Elie, A. Electropolymerization of Aniline and (N-Phenyl-o-Phenylenediamine) for Glucose Biosensor Application. Mater. Lett. 2019, 238, 267–270. [Google Scholar] [CrossRef]
- Komathi, S.; Gopalan, A.I.; Muthuchamy, N.; Lee, K.P. Polyaniline Nanoflowers Grafted onto Nanodiamonds via a Soft Template-Guided Secondary Nucleation Process for High-Performance Glucose Sensing. RSC Adv. 2017, 7, 15342–15351. [Google Scholar] [CrossRef] [Green Version]
- Bicak, T.C.; Gicevičius, M.; Gokoglan, T.C.; Yilmaz, G.; Ramanavicius, A.; Toppare, L.; Yagci, Y. Simultaneous and Sequential Synthesis of Polyaniline-g-Poly(Ethylene Glycol) by Combination of Oxidative Polymerization and CuAAC Click Chemistry: A Water-Soluble Instant Response Glucose Biosensor Material. Macromolecules 2017, 50, 1824–1831. [Google Scholar] [CrossRef]
- Feng, X.; Cheng, H.; Pan, Y.; Zheng, H. Development of Glucose Biosensors Based on Nanostructured Graphene-Conducting Polyaniline Composite. Biosens. Bioelectron. 2015, 70, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.; Aukstakojyte, R.; Gaidukevic, J.; Lisyte, V.; Kausaite-Minkstimiene, A.; Barkauskas, J.; Ramanaviciene, A. Reduced Graphene Oxide and Polyaniline Nanofibers Nanocomposite for the Development of an Amperometric Glucose Biosensor. Sensors 2021, 21, 948. [Google Scholar] [CrossRef] [PubMed]
- Gautam, V.; Singh, K.P.; Yadav, V.L. Polyaniline/Multiwall Carbon Nanotubes/Starch Nanocomposite Material and Hemoglobin Modified Carbon Paste Electrode for Hydrogen Peroxide and Glucose Biosensing. Int. J. Biol. Macromol. 2018, 111, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Wang, P.; Zhong, A.M.; Yang, M.; Xu, Q.; Hao, S.; Hu, X. Development of a Glucose Biosensor Based on Electrodeposited Gold Nanoparticles-Polyvinylpyrrolidone-Polyaniline Nanocomposites. J. Electroanal. Chem. 2015, 756, 153–160. [Google Scholar] [CrossRef]
- Chen, D.; Wang, C.; Chen, W.; Chen, Y.; Zhang, J.X.J. PVDF-Nafion Nanomembranes Coated Microneedles for in Vivo Transcutaneous Implantable Glucose Sensing. Biosens. Bioelectron. 2015, 74, 1047–1052. [Google Scholar] [CrossRef]
- Wu, H.; Shi, C.; Zhu, Q.; Li, Y.; Xu, Z.; Wei, C.; Chen, D.; Huang, X. Capillary-Driven Blood Separation and in-Situ Electrochemical Detection Based on 3D Conductive Gradient Hollow Fiber Membrane. Biosens. Bioelectron. 2021, 171, 112722. [Google Scholar] [CrossRef]
- Hansen, B.; Hocevar, M.A.; Ferreira, C.A. A Facile and Simple Polyaniline-Poly(Ethylene Oxide) Based Glucose Biosensor. Synth. Met. 2016, 222, 224–231. [Google Scholar] [CrossRef]
- Homma, T.; Kondo, M.; Kuwahara, T.; Shimomura, M. Polyaniline/Poly(Acrylic Acid) Composite Film: A Promising Material for Enzyme-Aided Electrochemical Sensors. Eur. Polym. J. 2015, 62, 139–144. [Google Scholar] [CrossRef]
- Palsaniya, S.; Nemade, H.B.; Dasmahapatra, A.K. Mixed Surfactant-Mediated Synthesis of Hierarchical PANI Nanorods for an Enzymatic Glucose Biosensor. ACS Appl. Polym. Mater. 2019, 1, 647–656. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Wang, X.; Huo, X.; Yan, R. Preparation of Polyaniline-TiO2 Nanotube Composite for the Development of Electrochemical Biosensors. Sens. Actuators B Chem. 2015, 221, 450–457. [Google Scholar] [CrossRef]
- Fang, L.; Liang, B.; Yang, G.; Hu, Y.; Zhu, Q.; Ye, X. A Needle-Type Glucose Biosensor Based on PANI Nanofibers and PU/E-PU Membrane for Long-Term Invasive Continuous Monitoring. Biosens. Bioelectron. 2017, 97, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liang, B.; Chen, S.; Zhu, Q.; Tu, T.; Wu, K.; Cao, Q.; Fang, L.; Liang, X.; Ye, X. One-Step Modification of Nano-Polyaniline/Glucose Oxidase on Double-Side Printed Flexible Electrode for Continuous Glucose Monitoring: Characterization, Cytotoxicity Evaluation and in Vivo Experiment. Biosens. Bioelectron. 2020, 165, 112408. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Mahanta, D. Deposition of an Ultra-Thin Polyaniline Coating on a TiO2 surface by Vapor Phase Polymerization for Electrochemical Glucose Sensing and Photocatalytic Degradation. RSC Adv. 2020, 10, 17387–17395. [Google Scholar] [CrossRef]
- Ma, T.M.; Zeng, H.; Zhao, S.X.; Huo, W.S. Spectroscopic and Electrochemical Features of Glucose Oxidase Incorporation into Polyaniline-Cobaltous Oxalate Nano-Complex. J. Inorg. Organomet. Polym. Mater. 2019, 29, 279–289. [Google Scholar] [CrossRef]
- Tang, W.; Li, L.; Zeng, X. A Glucose Biosensor Based on the Synergistic Action of Nanometer-Sized TiO2 and Polyaniline. Talanta 2015, 131, 417–423. [Google Scholar] [CrossRef]
- Xia, L.; Xia, J.; Wang, Z. Direct Electrochemical Deposition of Polyaniline Nanowire Array on Reduced Graphene Oxide Modified Graphite Electrode for Direct Electron Transfer Biocatalysis. RSC Adv. 2015, 5, 93209–93214. [Google Scholar] [CrossRef]
- Mello, H.J.N.P.D.; Mulato, M. Enzymatically Functionalized Polyaniline Thin Films Produced with One-Step Electrochemical Immobilization and Its Application in Glucose and Urea Potentiometric Biosensors. Biomed. Microdevices 2020, 22, 22. [Google Scholar] [CrossRef]
- Nogueira Pedroza Dias Mello, H.J.; Bueno, P.R. Comparing Glucose and Urea Enzymatic Electrochemical and Optical Biosensors Based on Polyaniline Thin Films. Anal. Methods 2020, 12, 4199–4210. [Google Scholar] [CrossRef]
- Al-Sagur, H.; Shanmuga sundaram, K.; Kaya, E.N.; Durmuş, M.; Basova, T.V.; Hassan, A. Amperometric Glucose Biosensing Performance of a Novel Graphene Nanoplatelets-Iron Phthalocyanine Incorporated Conducting Hydrogel. Biosens. Bioelectron. 2019, 139, 111323. [Google Scholar] [CrossRef]
- Al-Sagur, H.; Komathi, S.; Karakaş, H.; Atilla, D.; Gürek, A.G.; Basova, T.; Farmilo, N.; Hassan, A.K. A Glucose Biosensor Based on Novel Lutetium Bis-Phthalocyanine Incorporated Silica-Polyaniline Conducting Nanobeads. Biosens. Bioelectron. 2018, 102, 637–645. [Google Scholar] [CrossRef] [Green Version]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers 2021, 13, 2173. [Google Scholar] [CrossRef] [PubMed]
- Neupane, S.; Bhusal, S.; Subedi, V.; Nakarmi, K.B.; Gupta, D.K.; Yadav, R.J.; Yadav, A.P. Preparation of an Amperometric Glucose Biosensor on Polyaniline-Coated Graphite. J. Sens. 2021, 2021, 8832748. [Google Scholar] [CrossRef]
- Azimi, S.; Farahani, A.; Sereshti, H. Plasma-Functionalized Highly Aligned CNT-Based Biosensor for Point of Care Determination of Glucose in Human Blood Plasma. Electroanalysis 2020, 32, 394–403. [Google Scholar] [CrossRef]
- Kuwahara, T.; Ogawa, K.; Sumita, D.; Kondo, M.; Shimomura, M. Amperometric Glucose Sensing with Polyaniline/Poly(Acrylic Acid) Composite Film Bearing Glucose Oxidase and Catalase Based on Competitive Oxygen Consumption Reactions. J. Electroanal. Chem. 2018, 811, 62–67. [Google Scholar] [CrossRef]
- Fathollahzadeh, M.; Hosseini, M.; Haghighi, B.; Kolahdouz, M.; Fathipour, M. Fabrication of a Liquid-Gated Enzyme Field Effect Device for Sensitive Glucose Detection. Anal. Chim. Acta 2016, 924, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangwar, R.K.; Dhumale, V.A.; Date, K.S.; Alegaonkar, P.; Sharma, R.B.; Datar, S. Decoration of Gold Nanoparticles on Thin Multiwall Carbon Nanotubes and Their Use as a Glucose Sensor. Mater. Res. Express 2016, 3, 1–7. [Google Scholar] [CrossRef]
- Gong, C.; Chen, J.; Song, Y.; Sun, M.; Song, Y.; Guo, Q.; Wang, L. A Glucose Biosensor Based on the Polymerization of Aniline Induced by a Bio-Interphase of Glucose Oxidase and Horseradish Peroxidase. Anal. Methods 2016, 8, 1513–1519. [Google Scholar] [CrossRef]
- Li, R.; Guo, D.; Ye, J.; Zhang, M. Stabilization of Prussian Blue with Polyaniline and Carbon Nanotubes in Neutral Media for in Vivo Determination of Glucose in Rat Brains. Analyst 2015, 140, 3746–3752. [Google Scholar] [CrossRef]
- Zhu, D.; Nakamura, H.; Zhu, H.; Xu, C.; Matsuo, M. Microfibers from Interpolymer Complexation of κ-Carrageenan and Oligomers of Polyaniline for Glucose Detection. Synth. Met. 2015, 202, 133–139. [Google Scholar] [CrossRef]
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Shin, H.S. Nanocages-Augmented Aligned Polyaniline Nanowires as Unique Platform for Electrochemical Non-Enzymatic Glucose Biosensor. Appl. Catal. A Gen. 2016, 517, 21–29. [Google Scholar] [CrossRef]
- Bilal, S.; Ullah, W.; Ali Shah, A. ul H. Polyaniline@CuNi Nanocomposite: A Highly Selective, Stable and Efficient Electrode Material for Binder Free Non-Enzymatic Glucose Sensor. Electrochim. Acta 2018, 284, 382–391. [Google Scholar] [CrossRef]
- Yassin, M.A.; Shrestha, B.K.; Ahmad, R.; Shrestha, S.; Park, C.H.; Kim, C.S. Exfoliated Nanosheets of Co3O4 Webbed with Polyaniline Nanofibers: A Novel Composite Electrode Material for Enzymeless Glucose Sensing Application. J. Ind. Eng. Chem. 2019, 73, 106–117. [Google Scholar] [CrossRef]
- Fang, L.; Zhu, Q.; Cai, Y.; Liang, B.; Ye, X. 3D Porous Structured Polyaniline/Reduced Graphene Oxide/Copper Oxide Decorated Electrode for High Performance Nonenzymatic Glucose Detection. J. Electroanal. Chem. 2019, 841, 1–9. [Google Scholar] [CrossRef]
- Gopalan, A.I.; Muthuchamy, N.; Komathi, S.; Lee, K.P. A Novel Multicomponent Redox Polymer Nanobead Based High Performance Non-Enzymatic Glucose Sensor. Biosens. Bioelectron. 2016, 84, 53–63. [Google Scholar] [CrossRef]
- Kailasa, S.; Geeta, B.; Jayarambabu, N.; Kiran Kumar Reddy, R.; Sharma, S.; Venkateswara Rao, K. Conductive Polyaniline Nanosheets (CPANINS) for a Non-Enzymatic Glucose Sensor. Mater. Lett. 2019, 245, 118–121. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Qi, X.; Sun, J.; Li, M.; Wang, J. Conductive Ag-Based Modification of Hydroxyapatite Microtubule Array and Its Application to Enzyme-Free Glucose Sensing. ChemistrySelect 2018, 3, 2542–2547. [Google Scholar] [CrossRef]
- Lakhdari, D.; Guittoum, A.; Benbrahim, N.; Belgherbi, O.; Berkani, M.; Seid, L.; Khtar, S.A.; Saeed, M.A.; Lakhdari, N. Elaboration and Characterization of Ni (NPs)-PANI Hybrid Material by Electrodeposition for Non-Enzymatic Glucose Sensing. J. Electron. Mater. 2021, 50, 5250–5258. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, W.; Huang, M.; Zhang, S.; Zhao, Y.; Yang, Q.; Yan, B.; Gu, Y.; Chen, S. Copper Nanoparticles Decorated Halloysite Nanotube/Polyaniline Composites for High Performance Non-Enzymatic Glucose Sensor. J. Electrochem. Soc. 2021, 168, 086504. [Google Scholar] [CrossRef]
- Bano, S.; Ganie, A.S.; Sultana, S.; Khan, M.Z.; Sabir, S. The Non-Enzymatic Electrochemical Detection of Glucose and Ammonia Using Ternary Biopolymer Based-Nanocomposites. New J. Chem. 2021, 45, 8008–8021. [Google Scholar] [CrossRef]
- Lakhdari, D.; Guittoum, A.; Benbrahim, N.; Belgherbi, O.; Berkani, M.; Vasseghian, Y.; Lakhdari, N. A Novel Non-Enzymatic Glucose Sensor Based on NiFe(NPs)–Polyaniline Hybrid Materials. Food Chem. Toxicol. 2021, 151, 112099. [Google Scholar] [CrossRef] [PubMed]
- Jafari, G.; Gholipour-Kanani, A.; Rashidi, A.; Moazami, H.R. Novel Non-Enzymatic Glucose Biosensor Based on Electrospun PAN/PANI/CuO Nano-Composites. J. Text. Inst. In press. [CrossRef]
- Chiu, W.T.; Chang, T.F.M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Roles of TiO2 in the Highly Robust Au Nanoparticles-TiO2 Modified Polyaniline Electrode towards Non-Enzymatic Sensing of Glucose. Talanta 2020, 212, 120780. [Google Scholar] [CrossRef] [PubMed]
- Azharudeen, A.M.; Karthiga, R.; Rajarajan, M.; Suganthi, A. Fabrication, Characterization of Polyaniline Intercalated NiO Nanocomposites and Application in the Development of Non-Enzymatic Glucose Biosensor. Arab. J. Chem. 2020, 13, 4053–4064. [Google Scholar] [CrossRef]
- Kailasa, S.; Rani, B.G.; Bhargava Reddy, M.S.; Jayarambabu, N.; Munindra, P.; Sharma, S.; Venkateswara Rao, K. NiO Nanoparticles -Decorated Conductive Polyaniline Nanosheets for Amperometric Glucose Biosensor. Mater. Chem. Phys. 2020, 242, 122524. [Google Scholar] [CrossRef]
- Li, Z.; Qian, W.; Guo, H.; Song, X.; Yan, H.; Jin, R.; Zheng, J. Facile Preparation of Novel Pd Nanowire Networks on a Polyaniline Hydrogel for Sensitive Determination of Glucose. Anal. Bioanal. Chem. 2020, 412, 6849–6858. [Google Scholar] [CrossRef]
- Chiu, W.T.; Chang, T.F.M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Electrocatalytic Activity Enhancement of Au NPs-TiO2 Electrode via a Facile Redistribution Process towards the Non-Enzymatic Glucose Sensors. Sens. Actuators B Chem. 2020, 319, 128279. [Google Scholar] [CrossRef]
- Mamlayya, V.B.; Maile, N.C.; Fulari, V.J. A Study on Silver Nanoleaf-Decorated PANI Electrodes for Improved Electrochemical Performance. Polym. Bull. 2020, 77, 4587–4607. [Google Scholar] [CrossRef]
- Belgherbi, O.; Chouder, D.; Lakhdari, D.; Dehchar, C.; Laidoudi, S.; Lamiri, L.; Hamam, A.; Seid, L. Enzyme-Free Glucose Sensor Based on Star-Like Copper Particles-Polyaniline Composite Film. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2499–2508. [Google Scholar] [CrossRef]
- Sedighi, A.; Montazer, M.; Mazinani, S. Synthesis of Wearable and Flexible NiP 0.1 -SnOx/PANI/CuO/Cotton towards a Non-Enzymatic Glucose Sensor. Biosens. Bioelectron. 2019, 135, 192–199. [Google Scholar] [CrossRef]
- Liu, K.; Duan, X.; Yuan, M.; Xu, Y.; Gao, T.; Li, Q.; Zhang, X.; Huang, M.; Wang, J. How to Fit a Response Current-Concentration Curve? A Semi-Empirical Investigation of Non-Enzymatic Glucose Sensor Based on PANI-Modified Nickel Foam. J. Electroanal. Chem. 2019, 840, 384–390. [Google Scholar] [CrossRef]
- Liu, T.; Guo, Y.; Zhang, Z.; Miao, Z.; Zhang, X.; Su, Z. Fabrication of Hollow CuO/PANI Hybrid Nanofibers for Non-Enzymatic Electrochemical Detection of H2O2 and Glucose. Sens. Actuators B Chem. 2019, 286, 370–376. [Google Scholar] [CrossRef]
- Esmaeeli, A.; Ghaffarinejad, A.; Zahedi, A.; Vahidi, O. Copper Oxide-Polyaniline Nanofiber Modified Fluorine Doped Tin Oxide (FTO) Electrode as Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2018, 266, 294–301. [Google Scholar] [CrossRef]
- Ghanbari, K.; Babaei, Z. Fabrication and Characterization of Non-Enzymatic Glucose Sensor Based on Ternary NiO/CuO/Polyaniline Nanocomposite. Anal. Biochem. 2016, 498, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, H.; Zhang, X.; Liu, N.; Tan, W.; Zhang, X.; Zhang, L. Facile Synthesis of NiCo2O4@Polyaniline Core-Shell Nanocomposite for Sensitive Determination of Glucose. Biosens. Bioelectron. 2016, 75, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, A.J.S.; al Mamun, A.; Akter, T.; Mamun, M.A.; Faraezi, S.; Monira, F.Z. Enzyme-Free Impedimetric Glucose Sensor Based on Gold Nanoparticles/Polyaniline Composite Film. J. Solid State Electrochem. 2016, 20, 1933–1939. [Google Scholar] [CrossRef]
- Kumar, S.; Fu, Y.-P. PANI/g-C3N4 Composite over ZnCo2O4/Ni-Foam, a Bi-Functional Electrode as a Supercapacitor and Electrochemical Glucose Sensor. Sustain. Energy Fuels 2021, 5, 3987–4001. [Google Scholar] [CrossRef]
- Estadulho, G.L.D.; Alencar, L.M.; Guima, K.E.; Trindade, M.A.G.; Martins, C.A. 3D-Printed Templates Converted into Graphite, Ruthenium, or Copper Are Used as Monolithic Sensors. ACS Appl. Electron. Mater. 2021, 3, 3482–3488. [Google Scholar] [CrossRef]
- Anand, V.K.; Bhatt, K.; Kumar, S.; Archana, B.; Sharma, S.; Singh, K.; Gupta, M.; Goyal, R.; Virdi, G.S. Sensitive and Enzyme-Free Glucose Sensor Based on Copper Nanowires/Polyaniline/Reduced Graphene Oxide Nanocomposite Ink. Int. J. Nanosci. 2021, 20, 2150020. [Google Scholar] [CrossRef]
- Anand, V.K.; Bukke, A.; Bhatt, K.; Kumar, S.; Sharma, S.; Goyal, R.; Virdi, G.S. Highly Sensitive and Reusable Cu+2/Polyaniline/Reduced Graphene Oxide Nanocomposite Ink-Based Non-Enzymatic Glucose Sensor. Appl. Phys. A Mater. Sci. Process. 2020, 126, 500. [Google Scholar] [CrossRef]
- Du, J.; Tao, Y.; Xiong, Z.; Yu, X.; Xie, A.; Luo, S.; Li, X.; Yao, C. Titanium Dioxide-Graphene-Polyaniline Hybrid for Nonenzymatic Detection of Glucose. Nano 2019, 14, 1950093. [Google Scholar] [CrossRef]
- Mohajeri, S.; Dolati, A.; Yazdanbakhsh, K. Synthesis and Characterization of a Novel Non-Enzymatic Glucose Biosensor Based on Polyaniline/Zinc Oxide/Multi-Walled Carbon Nanotube Ternary Nanocomposite. J. Electrochem. Sci. Eng. 2019, 9, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Batool, R.; Akhtar, M.A.; Hayat, A.; Han, D.; Niu, L.; Ahmad, M.A.; Nawaz, M.H. A Nanocomposite Prepared from Magnetite Nanoparticles, Polyaniline and Carboxy-Modified Graphene Oxide for Non-Enzymatic Sensing of Glucose. Microchim. Acta 2019, 186, 267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, J.; Ding, F.; Zhao, Q.; Zhang, Z.; Liu, X.; Liu, Y.; Rao, H.; Zou, P.; Wang, X. A Bifunctional NiCo2S4/Reduced Graphene Oxide@polyaniline Nanocomposite as a Highly-Efficient Electrode for Glucose and Rutin Detection. New J. Chem. 2018, 42, 9398–9409. [Google Scholar] [CrossRef]
- Ghanbari, K.; Ahmadi, F. NiO Hedgehog-like Nanostructures/Au/Polyaniline Nanofibers/Reduced Graphene Oxide Nanocomposite with Electrocatalytic Activity for Non-Enzymatic Detection of Glucose. Anal. Biochem. 2017, 518, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Song, Y.; Ye, Y.; Gong, C.; Shen, Y.; Wang, L.; Wang, L. A Novel Flexible Electrochemical Glucose Sensor Based on Gold Nanoparticles/Polyaniline Arrays/Carbon Cloth Electrode. Sens. Actuators B Chem. 2017, 252, 1187–1193. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, P.; Li, Y.; Li, W.; Guo, Q. Polyaniline/Cerium Oxide Hybrid Modified Carbon Paste Electrode for Non-Enzymatic Glucose Detection. Bull. Korean Chem. Soc. 2016, 37, 985–986. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, L.; Lee, L.Y.S.; Wong, K.Y. Copper Nanoparticles/Polyaniline/Graphene Composite as a Highly Sensitive Electrochemical Glucose Sensor. J. Electroanal. Chem. 2016, 781, 155–160. [Google Scholar] [CrossRef]
- Zhuang, X.; Tian, C.; Luan, F.; Wu, X.; Chen, L. One-Step Electrochemical Fabrication of a Nickel Oxide Nanoparticle/Polyaniline Nanowire/Graphene Oxide Hybrid on a Glassy Carbon Electrode for Use as a Non-Enzymatic Glucose Biosensor. RSC Adv. 2016, 6, 92541–92546. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osuna, V.; Vega-Rios, A.; Zaragoza-Contreras, E.A.; Estrada-Moreno, I.A.; Dominguez, R.B. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors 2022, 12, 137. https://doi.org/10.3390/bios12030137
Osuna V, Vega-Rios A, Zaragoza-Contreras EA, Estrada-Moreno IA, Dominguez RB. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors. 2022; 12(3):137. https://doi.org/10.3390/bios12030137
Chicago/Turabian StyleOsuna, Velia, Alejandro Vega-Rios, Erasto Armando Zaragoza-Contreras, Iván Alziri Estrada-Moreno, and Rocio B. Dominguez. 2022. "Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection" Biosensors 12, no. 3: 137. https://doi.org/10.3390/bios12030137
APA StyleOsuna, V., Vega-Rios, A., Zaragoza-Contreras, E. A., Estrada-Moreno, I. A., & Dominguez, R. B. (2022). Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors, 12(3), 137. https://doi.org/10.3390/bios12030137