Reverse Electrochemical Sensing of FLT3-ITD Mutations in Acute Myeloid Leukemia Using Gold Sputtered ZnO-Nanorod Configured DNA Biosensors
Abstract
:1. Introduction
2. Methods and Materials
2.1. In-Silico Analysis of FLT3 Gene Mutation for Probe Derivations
2.2. Preparation of theProbe Sequence
2.3. Extraction of Genomic DNA (gDNA) from Cultured Cancer Cell Lines
2.4. Preparations of ZnO Sol-Gel Solution
2.5. Coating of ZnO Thin Films on IDE Chips
2.6. Hydrothermal Growth of ZnO-Nanorods with Gold Sputtering
2.7. DNA Capture Probe Immobilization
2.8. Surface Characterization of the Fabricated Sensor Surface
2.9. Target Hybridization and Gene Detection through EIS Measurements
2.10. Evaluating the Analytical Performance of the AML Biosensor
3. Results and Discussions
3.1. Detection Principles of the Designed Biosensor
3.2. Derivation of FLT3-Targeting ssDNA Probe Sequence
3.3. Confirming Amalgamations of Poly(A) Tail within the Capture Probe
3.4. Structural and Morphological Analysis of Tailored Sensing Surface
3.5. Analysis of FLT3 Mutations through Electrochemical Impedance Spectroscopy
3.6. Assessment of the Analytical Performance of AML Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lagunas-Rangel, F.A.; Chávez-Valencia, V.; Gómez-Guijosa, M.Á.; Cortes-Penagos, C. Acute myeloid leukemia—Genetic alterations and their clinical prognosis. Int. J. Hematol. Stem Cell Res. 2017, 11, 329–339. [Google Scholar]
- Xu, F.; Taki, T.; Yang, H.W.; Hanada, R.; Hongo, T.; Ohnishi, H.; Kobayashi, M.; Bessho, F.; Yanagisawa, M.; Hayashi, Y. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br. J. Haematol. 1999, 105, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Lagunas-Rangel, F.A.; Chávez-Valencia, V. FLT3–ITD and its current role in acute myeloid leukaemia. Med. Oncol. 2017, 34, 114. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, V.E.; Smith, C.C. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front. Oncol. 2020, 10, 2927. [Google Scholar] [CrossRef]
- Daver, N.; Schlenk, R.F.; Russell, N.H.; Levis, M.J. Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia 2019, 33, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- El Gammal, M.M.; Ebid, G.T.; Madney, Y.M.; Abo-Elazm, O.M.; Kelany, A.K.; Torra, O.S.; Radich, J.P. Clinical Effect of Combined Mutations in DNMT3A, FLT3-ITD, and NPM1 Among Egyptian Acute Myeloid Leukemia Patients. Clin. Lymphoma Myeloma Leuk. 2019, 19, e281–e290. [Google Scholar] [CrossRef]
- McKerrell, T.; Moreno, T.; Ponstingl, H.; Bolli, N.; Dias, J.M.L.; Tischler, G.; Colonna, V.; Manasse, B.; Bench, A.; Bloxham, D.; et al. Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood 2016, 128, E1–E9. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.F.; Li, G.R.; Wang, R.J.; Yi, Y.T.; Yang, L.; Jiang, D.; Zhang, X.P.; Peng, Y. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin. J. Cancer 2012, 31, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Duncavage, E.J.; Tandon, B. The utility of next-generation sequencing in diagnosis and monitoring of acute myeloid leukemia and myelodysplastic syndromes. Int. J. Lab. Hematol. 2015, 37, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.E.; Ko, C.H.; Lam, F.; Wu, L.S.H.; Lee, K.F. Establishment of a cost-effective method to detect FLT-ITD and D835 mutations in acute myeloid leukemia patients in the Taiwanese population. Tzu Chi Med. J. 2015, 27, 18–24. [Google Scholar] [CrossRef]
- Murphy, K.M.; Levis, M.; Hafez, M.J.; Geiger, T.; Cooper, L.C.; Smith, B.D.; Small, D.; Berg, K.D. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J. Mol. Diagn. 2003, 5, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Döhner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A.; et al. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010, 115, 453–474. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Martelli, M.P.; Pileri, S.A.; Mecucci, C. Molecular and alternative methods for diagnosis of acute myeloid leukemia with mutated NPM1: Flexibility may help. Haematologica 2010, 95, 529–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, T.; Fu, J.J.; Hu, L.; Qiu, F.; Hu, M.; Zhu, J.J.; Hua, Z.C.; Wang, H. Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces. Anal. Chem. 2013, 85, 5609–5616. [Google Scholar] [CrossRef]
- Amouzadeh Tabrizi, M.; Shamsipur, M.; Saber, R.; Sarkar, S. Isolation of HL-60 cancer cells from the human serum sample using MnO2-PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode. Biosens. Bioelectron. 2018, 110, 141–146. [Google Scholar] [CrossRef]
- Nur, Y.; Gaffar, S.; Hartati, Y.W.; Subroto, T. Applications of electrochemical biosensor of aptamers-based (APTASENSOR) for the detection of leukemia biomarker. Sens. Bio Sens. Res. 2021, 32, 100416. [Google Scholar] [CrossRef]
- Ramesh, T.; Foo, K.L.; Haarindraprasad, R.; Sam, A.J.; Solayappan, M. Gold-Hybridized Zinc Oxide Nanorods as Real-Time Low-Cost NanoBiosensors for Detection of virulent DNA signature of HPV-16 in Cervical Carcinoma. Sci. Rep. 2019, 9, 17039. [Google Scholar] [CrossRef]
- Adam, H.; Gopinath, S.C.B.; Md Arshad, M.K.; Ramanathan, S.; Ashokkumar, T.; Azan, M.I.A.; Adam, T.; Hashim, U. Fabrication of gold nanorod–zinc oxide nanocomposite on gap-fingered integrated interdigitated aluminum electrodes and their response to electrolytes. Appl. Phys. A Mater. Sci. Process. 2019, 125, 812. [Google Scholar] [CrossRef]
- Minh, Q.N.; Tong, H.D.; Kuijk, A.; Van De Bent, F.; Beekman, P.; Van Rijn, C.J.M. Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration. RSC Adv. 2017, 7, 50279–50286. [Google Scholar] [CrossRef] [Green Version]
- Napi, M.L.M.; Sultan, S.M.; Ismail, R.; How, K.W.; Ahmad, M.K. Electrochemical-based biosensors on different zinc oxide nanostructures: A review. Materials 2019, 12, 2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marie, M.; Mandal, S.; Manasreh, O. An electrochemical glucose sensor based on zinc oxide nanorods. Sensors 2015, 15, 18714–18723. [Google Scholar] [CrossRef]
- Immanuel, S.; Aparna, T.K.; Sivasubramanian, R. Graphene–Metal Oxide Nanocomposite Modified Electrochemical Sensors; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128153949. [Google Scholar]
- Khadher, A.; Farooqui, M.; Mohsin, M.; Rabbani, G. Metal Oxide Thin Films: A Mini Review. J. Adv. Sci. Res. 2016, 7, 1–8. [Google Scholar]
- Hahn, Y.B.; Ahmad, R.; Tripathy, N. Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun. 2012, 48, 10369–10385. [Google Scholar] [CrossRef] [PubMed]
- Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A.T. A Critical Review of Synthesis Parameters Affecting the Properties of Zinc Oxide Nanoparticle and Its Application in Wastewater Treatment; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 11, ISBN 0123456789. [Google Scholar]
- Perumal, V.; Hashim, U.; Gopinath, S.C.B.; Haarindraprasad, R.; Foo, K.L.; Balakrishnan, S.R.; Poopalan, P. “Spotted Nanoflowers”: Gold-seeded zinc oxide nanohybrid for selective bio-capture. Sci. Rep. 2015, 5, 12231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabu, S.S.; Ch’ng, E.S.; Woon, P.Y.; Chen, J.H.; Tang, T.H.; Citartan, M. Unravelling the diagnostic and therapeutic potentialities of a novel RNA aptamer isolated against human pituitary tumour transforming gene 1 (PTTG1) protein. Anal. Chim. Acta 2020, 1138, 181–190. [Google Scholar] [CrossRef]
- Citartan, M.; Gopinath, S.C.B.; Tang, T.H. Generation of RNA aptamer against rHuEPO-α by SELEX. Asian Pac. J. Trop. Dis. 2014, 4, 224. [Google Scholar] [CrossRef]
- Al-Mawali, A.; Gillis, D.; Lewis, I. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplication in the FLT3 gene. Oman Med. J. 2013, 28, 432–440. [Google Scholar] [CrossRef]
- Kelly, L.M.; Liu, Q.; Kutok, J.L.; Williams, I.R.; Boulton, C.L.; Gilliland, D.G. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002, 99, 310–318. [Google Scholar] [CrossRef]
- Hegedüs, É.; Kókai, E.; Kotlyar, A.; Dombrádi, V.; Szabó, G. Separation of 1-23-kb complementary DNA strands by urea-agarose gel electrophoresis. Nucleic Acids Res. 2009, 37, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Citartan, M.; Tan, S.C.; Tang, T.H. A rapid and cost effective method in purifying small RNA. World J. Microbiol. Biotechnol. 2012, 28, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Perumal, V.; Hashim, U.; Gopinath, S.C.B.; Haarindraprasad, R.; Liu, W.W.; Poopalan, P.; Balakrishnan, S.R.; Thivina, V.; Ruslinda, A.R. Thickness dependent nanostructural, Morphological, Optical and impedometric analyses of zinc oxide-Gold hybrids: Nanoparticle to thin film. PLoS ONE 2015, 10, e0144964. [Google Scholar] [CrossRef] [PubMed]
- Perumal, V.; Hashim, U.; Gopinath, S.C.B.; Prasad, H.R.; Wei-Wen, L.; Balakrishnan, S.R.; Vijayakumar, T.; Rahim, R.A. Characterization of gold-sputtered zinc oxide nanorods—A potential hybrid material. Nanoscale Res. Lett. 2016, 11, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elashmawi, I.S.; Hakeem, N.A.; Selim, M.S. Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites. Mater. Chem. Phys. 2009, 115, 132–135. [Google Scholar] [CrossRef]
- Przeździecka, E.; Paradowska, K.M.; Lysak, A.; Wierzbicka, A.; Sybilski, P.; Placzek-Popko, E.; Jakiela, R.; Sajkowski, J.M.; Kozanecki, A. Influence of as doping on the properties of nonpolar ZnO. Thin Solid Films 2021, 720. [Google Scholar] [CrossRef]
- Haarindraprasad, R.; Hashim, U.; Gopinath, S.C.B.; Veeradasan, P.; Liu, W.W.; Rao, B.S.; Thivina, V. Optical measurements on tailored zinc oxide thin films under optimal. Optik 2016, 127, 3069–3074. [Google Scholar] [CrossRef]
- Gopinathan, C.; Mahalakchimi, K. Columnar growth of nanocrystalline ZnO thin films prepared through RF magnetron sputtering. Adv. Stud. Theor. Phys. 2011, 5, 143–149. [Google Scholar]
- Mello, M.L.S.; Vidal, B.C. Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-stranded form. PLoS ONE 2012, 7, e43169. [Google Scholar] [CrossRef]
- Reddy, V.; Ramulu, T.S.; Sinha, B.; Lim, J.; Hoque, R.; Lee, J.H.; Kim, C.G. Electrochemical detection of single nucleotide polymorphism in short DNA sequences related to cattle Fatty acid binding protein 4 gene. Int. J. Electrochem. Sci. 2012, 7, 11058–11067. [Google Scholar]
- Han, Y.; Han, L.; Yao, Y.; Li, Y.; Liu, X. Key factors in FTIR spectroscopic analysis of DNA: The sampling technique, pretreatment temperature and sample concentration. Anal. Methods 2018, 10, 2436–2443. [Google Scholar] [CrossRef]
- Ramulu, T.S.; Venu, R.; Sinha, B.; Yoon, S.S.; Kim, C. Electrodeposition of CoPtP/Au multisegment nanowires: Synthesis and DNA functionalization. Int. J. Electrochem. Sci. 2012, 7, 7762–7769. [Google Scholar]
- Fu, Y.; Yuan, R.; Xu, L.; Chai, Y.; Liu, Y.; Tang, D.; Zhang, Y. Electrochemical impedance behavior of DNA biosensor based on colloidal Ag and bilayer two-dimensional sol-gel as matrices. J. Biochem. Biophys. Methods 2005, 62, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Karimizefreh, A.; Mahyari, F.A.; Vaezjalali, M.; Mohammadpour, R.; Sasanpour, P. Human papilloma virus detection using DNA biosensor with electrochemical impedance spectroscopy. J. Coupled Syst. Multiscale Dyn. 2015, 2, 164–168. [Google Scholar] [CrossRef]
- Wang, X.; Kong, X.; Yu, Y.; Zhang, H. Synthesis and characterization of water-soluble and bifunctional ZnO-Au nanocomposites. J. Phys. Chem. C 2007, 111, 3836–3841. [Google Scholar] [CrossRef]
- Bonanni, A.; Pumera, M.; Miyahara, Y. Influence of gold nanoparticle size (2–50 nm) upon its electrochemical behavior: An electrochemical impedance spectroscopic and voltammetric study. Phys. Chem. Chem. Phys. 2011, 13, 4980–4986. [Google Scholar] [CrossRef]
- Manning, G.S. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 1969, 51, 924–933. [Google Scholar] [CrossRef]
- Rant, U.; Arinaga, K.; Fujiwara, T.; Fujita, S.; Tornow, M.; Yokoyama, N.; Abstreiter, G. Excessive Counterion Condensation on Immobilized ssDNA in Solutions of High Ionic Strength. Biophys. J. 2003, 85, 3858–3864. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.N.; Grainger, D.W. Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomater. Sci. 2014, 2, 436–471. [Google Scholar] [CrossRef] [Green Version]
- Guler, Z.; Erkoc, P.; Sezai Sarac, A. Electrochemical impedance spectroscopic study of single-stranded dna-immobilized electroactive polypyrrole-coated electrospun poly(ɛ-caprolactone) nanofibers. Mater. Express 2015, 5, 269–279. [Google Scholar] [CrossRef]
- Souteyrand, E.; Cloarec, J.P.; Martin, J.R.; Wilson, C.; Lawrence, I.; Mikkelsen, S.; Lawrence, M.F. Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect. J. Phys. Chem. B 1997, 101, 2980–2985. [Google Scholar] [CrossRef]
- Birla Singh, M.; Kant, R. Theory of anomalous dynamics of electric double layer at heterogeneous and rough electrodes. J. Phys. Chem. C 2014, 118, 5122–5133. [Google Scholar] [CrossRef]
- Quentmeier, H.; Reinhardt, J.; Zaborski, M.; Drexler, H.G. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003, 17, 120–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinardo, C.D.; Cortes, J.E. Mutations in AML: Prognostic and therapeutic implications. Am. Soc. Hematol. 2016, 30, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attoye, B.; Baker, M.J.; Thomson, F.; Pou, C.; Corrigan, D.K. Optimisation of an Electrochemical DNA Sensor for Measuring KRAS G12D and G13D Point Mutations in Different Tumour Types. Biosensors 2021, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Chen, X.; Liu, J.; Liu, S.; Zhao, C. Development of an electrochemical DNA biosensor with the DNA immobilization based on in situ generation of dithiocarbamate ligands. Bioelectrochemistry 2012, 88, 30–35. [Google Scholar] [CrossRef]
- Ramulu, T.S.; Venu, R.; Sinha, B.; Lim, B.; Jeon, S.J.; Yoon, S.S.; Kim, C.G. Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosens. Bioelectron. 2013, 40, 258–264. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U.; Gopinath, S.C.B.; Haarindraprasad, R.; Poopalan, P.; Liu, W.; Ravichandran, M.; Balakrishnan, S.R.; Ruslinda, A.R. Biosensors and Bioelectronics A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods. Biosens. Bioelectron. 2016, 78, 14–22. [Google Scholar] [CrossRef]
- Bonanni, A.; Pumera, M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 2011, 5, 2356–2361. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Z.-L.; Zheng, S.-Y. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosens. Bioelectron. 2015, 15, 520–526. [Google Scholar] [CrossRef] [Green Version]
Label | Sequence (5′-3′) |
---|---|
Forward primer | TTTTTTTTAATTGCTGGTACCATTCCGTGGTATGAAT |
Reverse primer | TTTTTTTTTTTTTTTTTTTTATGTGCTTCGTGAACATAATGGATAAAATA |
Template | CCATTCCGTGGTATGAATAGATCTTATAATTTATTTTATCCATTATGTT |
DNA Probe | TTTTTTTTAATTGCTGGTACCATTCCGTGGTATGAATAGATCTTATAATTTATTTTATCCAT TATGTTCACGAAGCACATAAAAAAAAAAAAAAAAAAAA |
Label | Rct (Ω) | Rs (Ω) | n | Q (CPE) | Chi-Squared Value |
---|---|---|---|---|---|
Au/ZnO-Nanorods | 3.27 × 108 | 209.6 | 0.84 | 4.305 × 10−6 | 13.87 × 10−3 |
Au/ZnO-Nanorods/DNA probe (10 µM) | 4.829 × 105 | 208.4 | 0.84 | 3.746 × 10−6 | 4.871 × 10−3 |
Au/ZnO-Nanorod/DNA probe (10 µM)/target (1 µM) | 8.65 × 104 | 48.44 | 0.83 | 3.73 × 10−5 | 2.582 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thevendran, R.; Foo, K.L.; Hussin, M.H.; Moses, E.J.; Citartan, M.; Prasad, H.R.; Maheswaran, S. Reverse Electrochemical Sensing of FLT3-ITD Mutations in Acute Myeloid Leukemia Using Gold Sputtered ZnO-Nanorod Configured DNA Biosensors. Biosensors 2022, 12, 170. https://doi.org/10.3390/bios12030170
Thevendran R, Foo KL, Hussin MH, Moses EJ, Citartan M, Prasad HR, Maheswaran S. Reverse Electrochemical Sensing of FLT3-ITD Mutations in Acute Myeloid Leukemia Using Gold Sputtered ZnO-Nanorod Configured DNA Biosensors. Biosensors. 2022; 12(3):170. https://doi.org/10.3390/bios12030170
Chicago/Turabian StyleThevendran, Ramesh, Kai Loong Foo, Mohd Hazwan Hussin, Emmanuel Jairaj Moses, Marimuthu Citartan, Haarindraprasad Rajintra Prasad, and Solayappan Maheswaran. 2022. "Reverse Electrochemical Sensing of FLT3-ITD Mutations in Acute Myeloid Leukemia Using Gold Sputtered ZnO-Nanorod Configured DNA Biosensors" Biosensors 12, no. 3: 170. https://doi.org/10.3390/bios12030170
APA StyleThevendran, R., Foo, K. L., Hussin, M. H., Moses, E. J., Citartan, M., Prasad, H. R., & Maheswaran, S. (2022). Reverse Electrochemical Sensing of FLT3-ITD Mutations in Acute Myeloid Leukemia Using Gold Sputtered ZnO-Nanorod Configured DNA Biosensors. Biosensors, 12(3), 170. https://doi.org/10.3390/bios12030170