Preparation and Applications of Electrospun Nanofibers for Wearable Biosensors
Abstract
:1. Introduction
2. Electrospinning
2.1. Working Principle and Method
2.2. Several Common Electrospinning Methods
2.2.1. Coaxial Electrospinning
2.2.2. Centrifugal Electrospinning
2.2.3. Multi-Jet Electrospinning
2.2.4. Multilayer Electrospinning
2.2.5. Compound Field Electrospinning
2.3. Impact Parameters
2.3.1. Voltage
2.3.2. Concentration
2.3.3. Distance between the Collector and the Spinneret
2.3.4. Flow Rate
2.4. Fiber Morphology
3. Comparison of Electrospinning Wearable Sensors and Ordinary Sensors
3.1. How Electrospun Fibers Work in Sensors
3.2. Performance Comparison with Ordinary Sensors
4. Electrospun Fibers for Wearable Sensors
4.1. Wearable Pressure Sensor
4.2. Wearable Temperature Sensor
4.3. Wearable Biosensor
4.4. Wearable Strain Sensor
4.5. Wearable Photoelectric Sensor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Chen, Y.; Wang, W.; Yu, D. A Wearable Strain Sensor Based on Polyurethane Nanofiber Membrane with Silver nanowires/polyaniline Electrically Conductive Dual-network. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127477. [Google Scholar] [CrossRef]
- Sengupta, D.; Mastella, M.; Chicca, E.; Kottapalli, A. Skin-Inspired Flexible and Stretchable Electrospun Carbon Nanofiber Sensors for Neuromorphic Sensing. ACS Appl. Electron. Mater. 2022, 4, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fu, R.; Zhong, X.; Yu, P.; Tan, G.; Li, W.; Zhang, H.; Li, Y.; Zhou, L.; Ning, C. Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Rep. Phys. Sci. 2021, 2, 100541. [Google Scholar] [CrossRef]
- Zong, X.; Ran, S.; Kim, K.S.; Fang, D.; Hsiao, B.S.; Chu, B. Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Biomacromolecules 2003, 4, 416. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Su, J.; Fan, S.; Qiu, H.; Li, L. Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 2020, 406, 126777. [Google Scholar] [CrossRef]
- He, C.H.; Shen, Y.; Ji, F.Y.; He, J.H. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. Fractals 2020, 28, 2050011. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Jafari, S.M. Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Adv. Colloid Interface Sci. 2020, 286, 102297. [Google Scholar] [CrossRef] [PubMed]
- Xiaomei, W.; Fazhe, S.; Guangchao, Y.; Yuting, W.; Bo, L.; Dong, M. Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Sensors 2018, 18, 330. [Google Scholar]
- Zhou, C.; Chen, Z.; Zhang, A.; Hu, J.; Wang, X.; Yang, Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater. Sci. 2016, 4, 922–932. [Google Scholar]
- Wang, Y.; Xu, J.; Shen, Y.; Wang, C.A.; Shen, R. Fabrication of energetic aluminum core/hydrophobic shell nanofibers via coaxial electrospinning. Chem. Eng. J. 2021, 427, 132001. [Google Scholar] [CrossRef]
- Wang, L.; Ahmad, Z.; Huang, J.; Li, J.; Chang, M. Multi-Compartment Centrifugal Electrospinning Based Composite Fibers. Chem. Eng. J. 2017, 330, 541–549. [Google Scholar] [CrossRef]
- Zheng, G.; Jiang, J.; Wang, X.; Li, W.; Liu, J.; Fu, G.; Lin, L. Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications. Mater. Des. 2020, 189, 108504. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Wang, N.; Li, C. Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor. Nano Energy 2020, 78, 105385. [Google Scholar] [CrossRef]
- Guan, M.; Chen, J.; Zhang, X.; Yang, L.; Wang, B.; Zhong, S. Yarn-ball-shaped P2-Na2/3Fe1/2Mn1/2O2 nanofibers prepared by magnetic-assisted electrospinning method as high-performance cathode material for Na-ion batteries. Mater. Lett. 2019, 254, 24–27. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Fu, G.; Tang, Y. Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Mater. Today Energy 2021, 22, 100850. [Google Scholar] [CrossRef]
- Elashnikov, R.; Rimpelová, S.; Vosmanská, V.; Kolská, Z.; Kolářová, K.; Lyutakov, O.; Švorčík, V. Effect of sterilization methods on electrospun cellulose acetate butyrate nanofibers for SH-SY5Y cultivation. React. Funct. Polym. 2019, 143, 104339. [Google Scholar] [CrossRef]
- Xie, J.; Weng, L. Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives. Curr. Pharm. Des. 2015, 21, 1944–1959. [Google Scholar]
- Liu, Y.; Hao, M.; Chen, Z.; Liu, L.; Liu, Y.; Yang, W.; Ramakrishna, S. A review on recent advances in application of electrospun nanofiber materials as biosensors. Curr. Opin. Biomed. Eng. 2020, 13, 174–189. [Google Scholar] [CrossRef]
- Wu, J.; Qin, X.; Miao, C.; He, Y.B.; Liang, G.; Zhou, D.; Liu, M.; Han, C.; Li, B.; Kang, F. A honeycomb-cobweb inspired hierarchical core-shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon Int. J. Spons. Am. Carbon Soc. 2016, 98, 582–591. [Google Scholar] [CrossRef]
- Poudel, M.B.; Han, J.K. Confinement of Zn-Mg-Al-Layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors. Chem. Eng. J. 2021, 429, 132345. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, H.; Kim, M.; Lim, J.M.; Kim, S. Sequential Removal of Radioactive Cs by Electrochemical Adsorption and Desorption Reaction using Core-Shell Structured Carbon Nanofiber–Prussian Blue Composites. Chem. Eng. J. 2020, 399, 125817. [Google Scholar] [CrossRef]
- Li, X.; Ji, D.; Yu, B.; Ghosh, R.; He, J.; Qin, X.; Ramakrishna, S. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors. Chem. Eng. J. 2021, 426, 130345. [Google Scholar] [CrossRef]
- Guo, F.; You, H.; Zhang, D.; Chen, S. Lasing action from dye doped polymeric nanofibers: A comparison study of well aligned with randomly oriented nanofibers. Org. Electron. 2018, 63, 52–57. [Google Scholar] [CrossRef]
- Zhao, W.; Sahadevan, R.; Crandall, C.; Menkhaus, T.J.; Hao, F. Hot-pressed PAN/PVDF hybrid electrospun nanofiber membranes for ultrafiltration. J. Membr. Sci. 2020, 611, 118327. [Google Scholar]
- Su, Y.; Fan, T.; Bai, H.; Guan, H.; Long, Y. Bioinspired Superhydrophobic and Superlipophilic Nanofiber Membrane with Pine Needle-like Structure for Efficient Gravity-driven Oil/Water Separation. Sep. Purif. Technol. 2021, 274, 119098. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, Y.; Gao, M.; Xin, Y.; Wu, J.; Bao, N. RGO/InVO4 hollowed-out nanofibers: Electrospinning synthesis and its application in photocatalysis. Appl. Surf. Sci. 2015, 353, 118–126. [Google Scholar] [CrossRef]
- Kim, G.J.; Kim, K.O. Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci. Rep. 2020, 10, 18858. [Google Scholar] [CrossRef]
- Young, K.O.; Jin, L.S.; Hak, O.J. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater. 2018, 10, 540–551. [Google Scholar]
- Xu, Y.; Ding, Y.; Zhang, L.; Zhang, X. Highly sensitive enzyme-free glucose sensor based on CuO–NiO nanocomposites by electrospinning. Compos. Commun. 2021, 25, 100687. [Google Scholar] [CrossRef]
- Zhou, F.; Li, Y.; Tang, Y.; Gao, F.; Jing, W.; Du, Y.; Han, F. A novel flexible non-enzymatic electrochemical glucose sensor of excellent performance with ZnO nanorods modified on stainless steel wire sieve and stimulated via UV irradiation. Ceram. Int. 2022, 1, 332. [Google Scholar] [CrossRef]
- Qin, Z.; Lv, Y.; Fang, X.; Zhao, B.; Niu, F.; Min, L.; Pan, K. Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor. Chem. Eng. J. 2022, 427, 131650. [Google Scholar] [CrossRef]
- Yeh, C.C.; Lo, S.H.; Xu, M.X.; Yang, Y.J. Fabrication of a flexible wireless pressure sensor for intravascular blood pressure monitoring. Microelectron. Eng. 2019, 213, 55–61. [Google Scholar] [CrossRef]
- Veeralingam, S.; Badhulika, S. Bi2S3/PVDF/Ppy-Based Freestanding, Wearable, Transient Nanomembrane for Ultrasensitive Pressure, Strain, and Temperature Sensing. ACS Appl. Bio Mater. 2020, 4, 14–23. [Google Scholar] [CrossRef]
- Wang, S.N.; Lv, R.Q.; Zhao, Y.; Qian, J.K. A Mach-Zehnder interferometer-based High Sensitivity Temperature sensor for human body monitoring. Opt. Fiber Technol. 2018, 45, 93–97. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Xu, R.; Wang, W.; Yu, D. A Highly Sensitive and Wearable Pressure Sensor Based on Conductive Polyacrylonitrile Nanofibrous Membrane via Electroless Silver Plating. Chem. Eng. J. 2020, 394, 124960. [Google Scholar] [CrossRef]
- Huang, J.; Hao, Y.; Zhao, M.; Qiao, H.; Wei, Q. Biomass-based wearable and Self-powered pressure sensor for human motion detection. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106412. [Google Scholar] [CrossRef]
- Horne, J.; Mcloughlin, L.; Bridgers, B.; Wujcik, E.K. Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring-ScienceDirect. Sens. Actuators Rep. 2020, 2, 100005. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, B.; Chen, W.; Liu, W.; Zhang, S. Current Development of Wearable Sensors Based on Nanosheets and Applications. TrAC Trends Anal. Chem. 2021, 143, 116334. [Google Scholar] [CrossRef]
- Zhang, S.H.; Wang, F.X.; Li, J.J.; Peng, H.D.; Yan, J.H.; Pan, G.B. Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human. Act. Sens. 2017, 17, 2621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Yun, K.S. ECG Monitoring Garment Using Conductive Carbon Paste for Reduced Motion Artifacts. Polymers 2017, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, Z.; Gao, F.; Zhao, X.; Zhang, Y. Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring. Nano Energy 2021, 81, 105614. [Google Scholar] [CrossRef]
- Lee, S.; Franklin, S.; Hassani, F.A.; Yokota, T.; Nayeem, M.O.G.; Wang, Y.; Leib, R.; Cheng, G.; Franklin, D.W.; Someya, T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020, 370, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.; Bonifas, A.; Behnaz, A. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; Lee, Y.H.; Park, H.; Jin, S.W.; Jeong, Y.R.; Yun, J.; You, I.; Zi, G.; Ha, J.S. Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin. Adv. Mater. 2016, 28, 930–935. [Google Scholar] [CrossRef]
- An, B.W.; Heo, S.; Ji, S.; Bien, F.; Park, J. -U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 2018, 9, 2458. [Google Scholar] [CrossRef]
- Wu, X.; Ma, Y.; Zhang, G.; Chu, Y.; Du, J.; Zhang, Y.; Li, Z.; Duan, Y.; Fan, Z.; Huang, J. Thermally Stable, Biocompatible, and Flexible Organic Field-Effect Transistors and Their Application in Temperature Sensing Arrays for Artificial Skin. Adv. Funct. Mater. 2015, 25, 2138–2146. [Google Scholar] [CrossRef]
- Song, Y.; Min, J.; Yu, Y.; Wang, H.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, 9842. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhu, M.; Li, J.; Liu, L.; Ding, B. Wearable Biosensor for Sensitive Detection of Uric Acid in Artificial Sweat Enabled by a Fiber Structured Sensing Interface. Nano Energy 2021, 85, 106031. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, B.; Hojaiji, H.; Wang, Z.; Emaminejad, S. A wearable freestanding electrochemical sensing system. Sci. Adv. 2020, 6, eaaz0007. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Kim, J.; Shin, H.; Park, Y.G.; Park, J.U. Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Sci. Adv. 2021, 7, 7194. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Wang, Z. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, 9624. [Google Scholar] [CrossRef]
- Nasiri, S.; Khosravani, M.R. Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuators A Phys. 2020, 312, 112105. [Google Scholar] [CrossRef]
- Gang, G.; Wei, H.; Shao, J.; Dong, X. Recent progress of flexible and wearable strain sensors for human-motion monitoring. J. Semicond. 2018, 39, 21. [Google Scholar]
- Abro, Z.A.; Yi-Fan, Z.; Nan-Liang, C.; Cheng-Yu, H.; Lakho, R.A.; Halepoto, H. A novel flex sensor-based flexible smart garment for monitoring body postures. J. Ind. Text. 2019, 49, 262–274. [Google Scholar] [CrossRef]
- Cheng-Yu, H.; Abro, Z.A.; Yi-Fan, Z.; Lakho, R.A. An FBG-based smart wearable ring fabricated using FDM for monitoring body joint motion. J. Ind. Text. 2021, 50, 1660–1673. [Google Scholar] [CrossRef]
- Kondo, M.; Melzer, M.; Karnaushenko, D.; Uemura, T.; Sekitani, T. Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits. Sci. Adv. 2020, 6, 6094. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Choi, Y.; Chen, T.; Kim, H.; Piao, Y. Superhydrophobic and Wearable TPU Based Nanofiber Strain Sensor with Outstanding Sensitivity for High-Quality Body Motion Monitoring. Chem. Eng. J. 2021, 419, 129513. [Google Scholar] [CrossRef]
- Kumar, G.S.; Dipankar, M. Synergistically Enhanced Piezoelectric Output in Highly Aligned 1D Polymer Nanofibers Integrated All-fiber Nanogenerator for Wearable Nano-Tactile Sensor. Nano Energy 2018, 53, 245–257. [Google Scholar]
- Kqa, C.; Yza, C.; Koa, E.; Yda, C.; Xy, B.; Hw, B.; Jha, C.; Xqa, D.; Rwa, D. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon 2020, 170, 464–476. [Google Scholar]
- Guan, X.; Xu, B.; Wu, M.; Jing, T.; Gao, Y. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 2021, 80, 105549. [Google Scholar] [CrossRef]
- Qian, Q.; Zhu, M.; Li, Z.; Qiu, K.; Liu, X.; Yu, J.; Ding, B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 2019, 58, 750–758. [Google Scholar]
- Veeramuthu, L.; Li, W.L.; Liang, F.C.; Cho, C.J.; Rwei, S.P. Smart garment energy generators fabricated using stretchable electrospun nanofibers. React. Funct. Polym. 2019, 142, 96–103. [Google Scholar] [CrossRef]
- Nakata, S.; Shiomi, M.; Fujita, Y.; Arie, T.; Akita, S.; Takei, K. A wearable pH sensor with high sensitivity based on a flexible charge-coupled device. Nat. Electron. 2018, 1, 596–603. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.; Wang, J.; Luo, X.; Ying, Y. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 2021, 7, 4553. [Google Scholar] [CrossRef] [PubMed]
Sensitivity | Linear Range | Stability | Ref. | ||
---|---|---|---|---|---|
Glucose Sensor | Electrospinning | 4022 μAmM−1 cm−2 | 0.0002–1 mM | —— | [29] |
others | 91.8 μAmM−1 cm−2 | 0–13.0 mM | 20 (90%) 100 (60%) | [30] | |
Blood pressure sensor | Electrospinning | 60.28 kPa−1 | 0–24 kPa | 13,000 | [31] |
others | 6.19 kPa−2 | 0–6 kPa | —— | [32] | |
Body temperature sensor | Electrospinning | 5.76 °C−1 | 24–48 °C | 100 | [33] |
others | 8.962 nm°C−1 | 33–43 °C | —— | [34] | |
Pressure Sensor | Electrospinning | 1.49 kPa−1 | —— | around 1000 | [35] |
others | 0.24 kPa−1 | 10.5–96.25 kPa | around 1000 | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Ji, G.; Li, H.; Li, J.; Chen, Z.; Awuye, D.E.; Huang, J. Preparation and Applications of Electrospun Nanofibers for Wearable Biosensors. Biosensors 2022, 12, 177. https://doi.org/10.3390/bios12030177
Xu T, Ji G, Li H, Li J, Chen Z, Awuye DE, Huang J. Preparation and Applications of Electrospun Nanofibers for Wearable Biosensors. Biosensors. 2022; 12(3):177. https://doi.org/10.3390/bios12030177
Chicago/Turabian StyleXu, Tengzhou, Guojing Ji, Hui Li, Jiaduo Li, Zhou Chen, Desire Emefa Awuye, and Jie Huang. 2022. "Preparation and Applications of Electrospun Nanofibers for Wearable Biosensors" Biosensors 12, no. 3: 177. https://doi.org/10.3390/bios12030177
APA StyleXu, T., Ji, G., Li, H., Li, J., Chen, Z., Awuye, D. E., & Huang, J. (2022). Preparation and Applications of Electrospun Nanofibers for Wearable Biosensors. Biosensors, 12(3), 177. https://doi.org/10.3390/bios12030177