Visualising the Emerging Platform of Using Microalgae as a Sustainable Bio-Factory for Healthy Lipid Production through Biocompatible AIE Probes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalga Cultivation and Lipid Induction
2.2. Study of the Fluorescence Properties of Chlamydomonas reinhardtii and AIEgens
2.3. Determination of Algal Growth in Different Concentrations of AIEgens and H2O2
2.4. Determination of Hydrogen Peroxide Content
2.5. Study of Algal Growth during Hydrogen Peroxide Supplementation
2.6. Sample Preparation for Fluorescent Staining of Lipid and H2O2
2.7. Imaging of Chlamydomonas reinhardtii with Confocal Microscope
2.8. Flow Cytometric Analysis of Lipid Content
2.9. Lipid Extraction and Analysis of Fatty Acids
2.10. Data Analysis
3. Results
3.1. Effects of Nutrient and Light Manipulation on Algal Growth
3.2. Fluorescent Properties of 2-DPAN
3.3. Comparison of the Lipid-Specific Probes
3.4. Flow Cytometric Analysis of Lipid Content
3.5. Confocal Analysis of the Stress-Induced Lipid Droplets in Chlamydomonas reinhardtii
3.6. Hydrogen Peroxide Content in the Chlamydomonas reinhardtii Cells
3.7. Confocal Analysis of H2O2 Activity in Nutrient-Starved Chlamydomonas reinhardtii Cells
3.8. Effects of H2O2 Supplementation on Chlamydomonas reinhardtii
3.9. Effects of H2O2 Supplementation on Lipid Bioaccumulation
3.10. Fatty Acid Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Carvalho, M.J.C.R.; Caramujo, M.J. The various roles of fatty acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Orešič, M.; Hänninen, V.A.; Vidal-Puig, A. Lipidomics: A new window to biomedical frontiers. Trends Biotechnol. 2008, 26, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Fasano, E.; Serini, S.; Cittadini, A.; Calviello, G. Long-chain n-3 PUFA against breast and prostate cancer: Which are the appropriate doses for intervention studies in animals and humans? Crit. Rev. Food Sci. Nutr. 2015, 57, 2245–2262. [Google Scholar] [CrossRef]
- Coelho, O.G.L.; Silva, B.; Rocha, D.M.; Lopes, L.; Alfenas, R.D.C.G. Polyunsaturated fatty acids and type 2 diabetes: Impact on the glycemic control mechanism. Crit. Rev. Food Sci. Nutr. 2017, 57, 3614–3619. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [Green Version]
- Brenna, J.T.; Diau, G.-Y. The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukot. Essent. Fat. Acids 2007, 77, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.E.; Pereira, S.L.; Sprecher, H.; Huang, Y.-S. Elongation of long-chain fatty acids. Prog. Lipid Res. 2004, 43, 36–54. [Google Scholar] [CrossRef]
- Castro, L.F.C.; Tocher, D.R.; Monroig, O. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog. Lipid Res. 2016, 62, 25–40. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Iskandarov, U.; Cohen, Z. LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biotechnol. 2011, 91, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Harwood, J.L.; Guschina, I.A. The versatility of algae and their lipid metabolism. Biochimie 2009, 91, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A.; Fatih Demirbas, M. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [Google Scholar] [CrossRef]
- Dong, H.-P.; Williams, E.; Wang, D.-Z.; Xie, Z.-X.; Hsia, R.-C.; Jenck, A.; Halden, R.; Li, J.; Chen, F.; Place, A.R. Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol. 2013, 162, 1110–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallick, N.; Bagchi, S.K.; Koley, S.; Singh, A.K. Progress and challenges in microalgal biodiesel production. Front. Microbiol. 2016, 7, 1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aratboni, H.A.; Rafiei, N.; Garcia-Granados, R.; Alemzadeh, A.; Morones-Ramírez, J.R. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb. Cell Fact. 2019, 18, 178. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.; Aflalo, C.; Bernard, O. Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass Bioenergy 2021, 150, 106108. [Google Scholar] [CrossRef]
- You, Z.; Zhang, Q.; Peng, Z.; Miao, X. Lipid droplets mediate salt stress tolerance in Parachlorella kessleri. Plant Physiol. 2019, 181, 510–526. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Hoffmann-Benning, S.; Wang, S.; Yin, L.; Zienkiewicz, A.; Zienkiewicz, K. Editorial: Lipid metabolism in development and environmental stress tolerance for engineering agronomic traits. Front. Plant Sci. 2021, 12, 739786. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Incharoensakdi, A. Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment. Bioresour. Technol. 2017, 235, 366–370. [Google Scholar] [CrossRef]
- Yilancioglu, K.; Cokol, M.; Pastirmaci, I.; Erman, B.; Cetiner, S. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE 2014, 9, e91957. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS Function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reczek, C.R.; Chandel, N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015, 33, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Niethammer, P.; Grabher, C.; Look, A.T.; Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009, 459, 996–999. [Google Scholar] [CrossRef]
- Miller, E.W.; Tulyanthan, O.; Isacoff, E.; Chang, C.J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 2007, 3, 263–267. [Google Scholar] [CrossRef]
- Haskew-Layton, R.E.; Payappilly, J.B.; Smirnova, N.A.; Ma, T.C.; Chan, K.K.; Murphy, T.H.; Guo, H.; Langley, B.; Sultana, R.; Butterfield, D.A.; et al. Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc. Natl. Acad. Sci. USA 2010, 107, 17385–17390. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604–17605. [Google Scholar] [CrossRef]
- Collot, M.; Fam, T.K.; Ashokkumar, P.; Faklaris, O.; Galli, T.; Danglot, L.; Klymchenko, A.S. Ultrabright and fluorogenic probes for multicolor imaging and tracking of lipid droplets in cells and tissues. J. Am. Chem. Soc. 2018, 140, 5401–5411. [Google Scholar] [CrossRef] [Green Version]
- Reza, A.H.M.M.; Zhou, Y.; Qin, J.; Tang, Y. Aggregation-induced emission luminogens for lipid droplet imaging. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 101–144. [Google Scholar] [CrossRef]
- Leung, N.L.C.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J.W.Y.; Tang, B.Z. Restriction of intramolecular motions: The general mechanism behind aggregation-induced emission. Chem. Eur. J. 2014, 20, 15349–15353. [Google Scholar] [CrossRef]
- Li, L.; Zhou, F.; Gao, Q.; Lu, Y.; Xu, X.; Hu, R.; Wang, Z.; Peng, M.; Yang, Z.; Tang, B.Z. Visualizing dynamic performance of lipid droplets in a parkinson’s disease model via a smart photostable aggregation-induced emission probe. iScience 2019, 21, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Liu, W.; Li, P.; Huang, F.; Wang, H.; Tang, B. Rapid-response fluorescent probe for hydrogen peroxide in living cells based on increased polarity of C–B bonds. Anal. Chem. 2015, 87, 9825–9828. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Tang, B.Z. AIE luminogens for bioimaging and theranostics: From organelles to animals. Chem 2017, 3, 56–91. [Google Scholar] [CrossRef] [Green Version]
- Nichols, H.W. Handbook of Phycological Methods; Stein, J.R., Ed.; Cambridge University Press: Cambridge, UK, 1973; pp. 16–17. [Google Scholar]
- Chokshi, K.; Pancha, I.; Ghosh, A.; Mishra, S. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnol. Biofuels 2017, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, M.S.; Hardin, W.R.; Petersen, T.W.; Cattolico, R.A. Visualizing "green oil" in live algal cells. J. Biosci. Bioeng. 2010, 109, 198–201. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Christie, W.W. Preparation of ester derivatives of fatty acids for chromatographic analysis. Adv. Lipid Methodol. 1993, 2, e111. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Rumin, J.; Bonnefond, H.; Saint-Jean, B.; Rouxel, C.; Sciandra, A.; Bernard, O.; Cadoret, J.-P.; Bougaran, G. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol. Biofuels 2015, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, U.; Blaby, I.; Casero, D.; Gallaher, S.D.; Goodson, C.; Johnson, S.; Lee, J.-H.; Merchant, S.S.; Pellegrini, M.; Roth, R.; et al. The Path to Triacylglyceride Obesity in the sta6 Strain of Chlamydomonas reinhardtii. Eukaryot. Cell 2014, 13, 591–613. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, E.C.; Wilkie, A.C.; Kirst, M.; Rathinasabapathi, B. Metabolic regulation of triacylglycerol accumulation in the green algae: Identification of potential targets for engineering to improve oil yield. Plant Biotechnol. J. 2016, 14, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-M.; Ren, L.-J.; Zhao, Q.-Y.; Ji, X.-J.; Huang, H. Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnol. Biofuels 2018, 11, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, V.; Kashyap, M.; Ghosh, A.; Samadhiya, K.; Kiran, B. A strategy for lipid production in Scenedesmus sp. by multiple stresses induction. Biomass Convers. Biorefinery 2021, 1–11. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biol. Rev. Camb. Philos. Soc. 2021, 96, 2373–2391. [Google Scholar] [CrossRef]
- Liu, B.; Benning, C. Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotechnol. 2013, 24, 300–309. [Google Scholar] [CrossRef]
- Siaut, M.; Cuiné, S.; Cagnon, C.; Fessler, B.; Nguyen, M.; Carrier, P.; Beyly, A.; Beisson, F.; Triantaphylidès, C.; Li-Beisson, Y.; et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.; Wu, G.; Deshpande, R.R.; Vieler, A.; Gärtner, K.; Li, X.; Moellering, E.R.; Zäuner, S.; Cornish, A.J.; Liu, B.; et al. Changes in transcript abundance in chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 2010, 154, 1737–1752. [Google Scholar] [CrossRef] [Green Version]
- De Lomana, A.L.G.; Schäuble, S.; Valenzuela, J.; Imam, S.; Carter, W.; Bilgin, D.D.; Yohn, C.B.; Turkarslan, S.; Reiss, D.J.; Orellana, M.V.; et al. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. Biotechnol. Biofuels 2015, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Shene, C.; Asenjo, J.A.; Chisti, Y. Metabolic modelling and simulation of the light and dark metabolism of Chlamydomonas reinhardtii. Plant J. 2018, 96, 1076–1088. [Google Scholar] [CrossRef]
- Shi, K.; Gao, Z.; Shi, T.-Q.; Song, P.; Ren, L.-J.; Huang, H.; Ji, X.-J. Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: The state of the art and future perspectives. Front. Microbiol. 2017, 8, 793. [Google Scholar] [CrossRef]
- Reza, A.H.M.M.; Zhu, X.; Qin, J.; Tang, Y. Microalgae-derived health supplements to therapeutic shifts: Redox-based study opportunities with AIE-based technologies. Adv. Healthc. Mater. 2021, 10, e2101223. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, X.; Wang, M.; Zhang, W.; Zhou, B.; Wang, Y. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation. J. Photochem. Photobiol. B 2017, 173, 360–367. [Google Scholar] [CrossRef]
- Qiao, T.; Zhao, Y.; Zhong, D.-B.; Yu, X. Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Res. 2021, 53, 102017. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; He, C.; Wang, Q. Ca2+ signal transduction related to neutral lipid synthesis in an oil-producing green alga Chlorella sp. C2. Plant Cell Physiol. 2014, 55, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.K.; Schuhmann, H.; Schenk, P.M. High lipid induction in microalgae for biodiesel production. Energies 2012, 5, 1532–1553. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Gorain, P.C.; Bagchi, S.K.; Mallick, N. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environ. Technol. 2013, 34, 1887–1894. [Google Scholar] [CrossRef]
- Ikner, A.; Shiozaki, K. Yeast signaling pathways in the oxidative stress response. Mutat. Res. 2005, 569, 13–27. [Google Scholar] [CrossRef]
- Pokora, W.; Aksmann, A.; Baścik-Remisiewicz, A.; Dettlaff-Pokora, A.; Tukaj, Z. Exogenously applied hydrogen peroxide modifies the course of the Chlamydomonas reinhardtii cell cycle. J. Plant Physiol. 2018, 230, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 29, 4332–4353. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Zhao, E.; Hong, Y.; Lam, J.W.Y.; Tang, B.Z. A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. J. Mater. Chem. B 2014, 2, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Engui, Z.; Zhao, E.; Wang, J.; Li, X.; Qin, A.; Zhao, Z.; Yu, Z.; Tang, B.Z. Specific fluorescence probes for lipid droplets based on simple AIEgens. ACS Appl. Mater. Interfaces 2016, 8, 10193–10200. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zhou, F.; Zhou, T.; Shen, J.; Wang, Z.; Zhao, Z.; Qin, A.; Tang, B.Z. Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AIEgen. Biomaterials 2018, 187, 47–54. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, F.; Wang, J.; Zhao, Z.; Qin, A.; Yu, Z.; Tang, B.Z. Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine. Sci. China Chem. 2018, 61, 76–87. [Google Scholar] [CrossRef]
- Daemen, S.; Van Zandvoort, M.; Parekh, S.H.; Hesselink, M.K.C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol. Metab. 2015, 5, 153–163. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders—a review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [Green Version]
- Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.J.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-Laylin, L.K.; Maréchal-Drouard, L.; et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007, 318, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Li-Beisson, Y.; Beisson, F.; Riekhof, W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J. 2015, 82, 504–522. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fosse, H.K.; Li, K.; Chauton, M.S.; Vadstein, O.; Reitan, K.I. Influence of nitrogen limitation on lipid accumulation and EPA and DHA content in four marine microalgae for possible use in aquafeed. Front. Mar. Sci. 2019, 6, 95. [Google Scholar] [CrossRef]
- Stark, A.H.; Crawford, M.A.; Reifen, R. Update on alpha-linolenic acid. Nutr. Rev. 2008, 66, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Etherton, T.D.; Martin, K.R.; West, S.G.; Gillies, P.J.; Kris-Etherton, P.M. Dietary α-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J. Nutr. 2004, 134, 2991–2997. [Google Scholar] [CrossRef]
- Albert, C.M.; Oh, K.; Whang, W.; Manson, J.E.; Chae, C.U.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Dietary α-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation 2005, 112, 3232–3238. [Google Scholar] [CrossRef] [Green Version]
- Campos, H.; Baylin, A.; Willett, W.C. α-linolenic acid and risk of nonfatal acute myocardial infarction. Circulation 2008, 118, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Nguemeni, C.; Delplanque, B.; Rovere, C.; Simon-Rousseau, N.; Gandin, C.; Agnani, G.; Nahon, J.L.; Heurteaux, C.; Blondeau, N. Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol. Res. 2010, 61, 226–233. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Wolk, A.; Colditz, G.; Hennekens, C.H.; Willett, W.C. Dietary intake of α-linolenic acid and risk of fatal ischemic heart disease among women. Am. J. Clin. Nutr. 1999, 69, 890–897. [Google Scholar] [CrossRef]
- Leikin-Frenkel, A.I. Is there A role for alpha-linolenic acid in the fetal programming of health? J. Clin. Med. 2016, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- de Lorgeril, M.; Salen, P. Alpha-linolenic acid and coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 162–169. [Google Scholar] [CrossRef]
- Saito, S.; Fukuhara, I.; Osaki, N.; Nakamura, H.; Katsuragi, Y. Consumption of alpha-linolenic acid-enriched diacylglycerol reduces visceral fat area in overweight and obese subjects: A randomized, double-blind controlled, parallel-group designed trial. J. Oleo Sci. 2016, 65, 603–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, H.; Sakurai, C.; Noda, R.; Sekine, S.; Murano, Y.; Wanaka, K.; Kasai, M.; Watanabe, S.; Aoyama, T.; Kondo, K. Antihypertensive effect and safety of dietary alpha-linolenic acid in subjects with high-normal blood pressure and mild hypertension. J. Oleo Sci. 2007, 56, 347–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koto, T.; Nagai, N.; Mochimaru, H.; Kurihara, T.; Izumi-Nagai, K.; Satofuka, S.; Shinoda, H.; Noda, K.; Ozawa, Y.; Inoue, M.; et al. Eicosapentaenoic acid is anti-inflammatory in preventing choroidal neovascularization in mice. Investig. Opthalmology Vis. Sci. 2007, 48, 4328–4334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fussbroich, D.; Colas, R.A.; Eickmeier, O.; Trischler, J.; Jerkic, S.P.; Zimmermann, K.; Göpel, A.; Schwenger, T.; Schaible, A.; Henrich, D.; et al. A combination of LCPUFA ameliorates airway inflammation in asthmatic mice by promoting pro-resolving effects and reducing adverse effects of EPA. Mucosal Immunol. 2020, 13, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Guesnet, P.; Alessandri, J.-M. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)—Implications for dietary recommendations. Biochimie 2011, 93, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Salem, N.; Sinclair, A.J.; Cunnane, S.C. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 85–91. [Google Scholar] [CrossRef]
- Burdge, G.C.; Calder, P.C. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef]
- Wu, Y.; Qu, J.Y. Autofluorescence spectroscopy of epithelial tissues. J. Biomed. Opt. 2006, 11, 054023. [Google Scholar] [CrossRef]
FAMEs (%) | Treatments | |||||
---|---|---|---|---|---|---|
Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 | 0.4 mM H2O2 | 0.6 mM H2O2 | |
C4:0 | 1.29 ± 0.18 | 1.25 ± 0.17 | 1.01 ± 0.01 | 0.91 ± 0.15 | 0.91 ± 0.35 | 0.72 ± 0.08 |
C12:0 | 0.22 ± 0.02 | 0.21 ± 0.03 | 0.17 ± 0.01 | 0.15 ± 0.03 | 0.15 ± 0.05 | 0.12 ± 0.03 |
C13:0 | 0.16 ±0.042 | --* | --* | --* | --* | --* |
C14:0 | 0.87 ± 0.07 | 0.96 ± 0.05 | 0.53 ± 0.01 | 0.25 ± 0.35 | 0.50 ± 0.06 | 0.48 ± 0.03 |
C14:1 N-5 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.15 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.02 | 0.09 ± 0.01 |
C15:0 | 0.42 ± 0.03 | 0.45 ± 0.06 | 0.26 ± 0.01 | 0.32 ± 0.03 | 0.26 ± 0.07 | 0.23 ± 0.04 |
C16:0 | 43.66 ± 1.05 | 41.10 ± 0.70 | 37.0 ± 1.28 | 33.60 ± 0.22 | 33.60 ± 0.23 | 33.66 ± 1.0 |
C16:1 N-7 | 0.98 ± 0.03 | 2.01 ± 0.03 | 1.27 ± 0.22 | 0.71 ± 0.03 | 0.56 ± 0.03 | 0.61 ± 0.16 |
C17:0 | 0.95 ± 0.13 | 0.92 ± 0.13 | 0.75 ± 0.01 | 0.71 ± 0.08 | 0.69 ± 0.23 | 0.56 ± 0.04 |
C17:1 N-7 | 1.79 ± 0.03 | 2.37 ± 0.08 | 2.22 ± 0.05 | 2.19 ± 0.26 | 1.93 ± 0.23 | 1.85 ± 0.07 |
C18:0 | 2.30 ± 0.03 | 2.47 ± 0.01 | 1.70 ± 0.17 | 1.32 ± 0.19 | 1.53 ± 0.03 | 1.50 ± 0.17 |
C18:1 N-9 | 5.70 ± 0.78 | 6.45 ± 1.68 | 3.06 ± 0.11 | 1.77 ± 0.23 | 2.98 ± 0.03 | 3.19 ± 0.21 |
C18:2 N-6,9 | 18.91 ± 0.09 | 14.13 ± 1.97 | 12.84 ± 0.60 | 8.84 ± 0.18 | 15.75 ± 1.92 | 16.19 ± 0.28 |
C18:3 N-3,6,9 | 17.75 ± 1.53 | 23.79 ± 2.47 | 35.19 ± 2.50 | 46.05 ± 2.31 | 38.29 ± 2.91 | 37.38 ± 1.88 |
C20:0 | 0.89 ± 0.10 | 0.87 ± 0.11 | 0.63 ± 0.01 | 0.57 ± 0.10 | 0.59 ± 0.23 | 0.47 ± 0.03 |
C20:1 N-9 | 0.41 ± 0.03 | 0.39 ± 0.04 | 0.31 ± 0.01 | 0.15 ± 0.22 | 0.27 ± 0.09 | 0.23 ± 0.02 |
C20:2 N-6,9 | 0.42 ± 0.08 | --* | 0.16 ± 0.23 | --* | 0.10 ± 0.15 | 0.23 ± 0.02 |
C20:3 N-6,9,12 | --* | --* | --* | 0.17 ± 0.240 | --* | --* |
C21:0 | 0.33 ± 0.04 | 0.32 ± 0.05 | 0.12 ± 0.18 | 0.10 ± 0.14 | 0.24 ± 0.10 | 0.18 ± 0.02 |
C20:4 N-6,9,12,15 | 0.48 ± 0.10 | --* | --* | --* | --* | --* |
C20:3 N-3,6,9 | --* | --* | 0.35 ± 0.01 | --* | --* | --* |
C20:5 N-3,6,9,12,15 | 0.21 ± 0.30 | 0.15 ± 0.21 | 0.15 ± 0.21 | --* | 0.10 ± 0.14 | 0.10 ± 0.15 |
C22:0 | 0.42 ± 0.35 | 0.41 ± 0.03 | 0.33 ± 0.01 | 0.29 ± 0.05 | 0.26 ± 0.09 | 0.22 ± 0.01 |
C22:1 N-9 | 1.39 ± 0.17 | 1.43 ± 0.02 | 1.55 ± 0.25 | 1.53 ± 0.69 | 1.03 ± 0.04 | 1.79 ± 0.50 |
C22:2 N-6,9 | 0.12 ± 0.14 | 0.05 ± 0.07 | 0.10 ± 0.01 | 0.05 ± 0.08 | 0.03 ± 0.05 | 0.08 ± 0.01 |
C22:4 N-6,9,12,15 | --* | --* | --* | 0.06 ± 0.08 | --* | --* |
C24:0 | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 |
C22:6 N-3,6,9,12,15,18 | 0.06 ± 0.01 | --* | 0.06 ± 0.08 | 0.04 ± 0.06 | 0.04 ± 0.06 | 0.04 ± 0.06 |
C24:1 N-9 | 0.04 ± 0.01 | 0.01 ± 0.01 | --* | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.02 |
SAFAs | 51.61 ± 12.41 | 49.07 ± 11.68 | 42.55 ± 10.55 | 38.27 ± 9.59 | 38.78 ± 9.57 | 38.18 ± 9.61 |
MUFAs | 10.44 ± 1.97 | 12.80 ± 2.24 | 8.58 ± 1.15 | 6.49 ± 0.89 | 6.90 ± 1.10 | 7.79 ± 1.19 |
PUFAs | 37.42 ± 8.04 | 38.13 ± 8.69 | 48.86 ± 11.92 | 55.22 ± 11.25 | 54.32 ± 13.16 | 54.04 ± 12.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reza, A.M.; Rakhi, S.F.; Zhu, X.; Tang, Y.; Qin, J. Visualising the Emerging Platform of Using Microalgae as a Sustainable Bio-Factory for Healthy Lipid Production through Biocompatible AIE Probes. Biosensors 2022, 12, 208. https://doi.org/10.3390/bios12040208
Reza AM, Rakhi SF, Zhu X, Tang Y, Qin J. Visualising the Emerging Platform of Using Microalgae as a Sustainable Bio-Factory for Healthy Lipid Production through Biocompatible AIE Probes. Biosensors. 2022; 12(4):208. https://doi.org/10.3390/bios12040208
Chicago/Turabian StyleReza, AHM Mohsinul, Sharmin Ferdewsi Rakhi, Xiaochen Zhu, Youhong Tang, and Jianguang Qin. 2022. "Visualising the Emerging Platform of Using Microalgae as a Sustainable Bio-Factory for Healthy Lipid Production through Biocompatible AIE Probes" Biosensors 12, no. 4: 208. https://doi.org/10.3390/bios12040208
APA StyleReza, A. M., Rakhi, S. F., Zhu, X., Tang, Y., & Qin, J. (2022). Visualising the Emerging Platform of Using Microalgae as a Sustainable Bio-Factory for Healthy Lipid Production through Biocompatible AIE Probes. Biosensors, 12(4), 208. https://doi.org/10.3390/bios12040208