Prussian Blue Nanoparticle Supported MoS2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. Preparation of MoS2-CPBNPs Nanozymes
2.4. Peroxidase-Like Activity of MoS2-CPBNPs Nanozymes
3. Results and Discussion
3.1. Characterization of MoS2-CPBNPs Nanozymes
3.2. Optimization of Experimental Condition
3.3. Kinetic Investigation of MoS2-CPBNPs Nanozymes
3.4. Colorimetric Detection of Dopamine Based on MoS2-CPBNPs Nanozymes
3.5. The Selectivity of the Colorimetric Sensor
3.6. Determination of Dopamine in Real Samples
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-Like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (Ii). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Sosa-Hernández, J.E.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. Biosensors 2021, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, Y.; Wei, H. Nanozymes in Bionanotechnology: From Sensing to Therapeutics and Beyond. Inorg. Chem. Front. 2016, 3, 41–60. [Google Scholar] [CrossRef]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New Horizons for Responsive Biomedical Applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, J.; Han, L.; Wang, X.; Li, W.; Guo, H.; Wei, H. Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides. Anal. Chem. 2020, 92, 7444–7452. [Google Scholar] [CrossRef]
- Chen, J.; Ma, Q.; Li, M.; Chao, D.; Huang, L.; Wu, W.; Fang, Y.; Dong, S. Glucose-Oxidase Like Catalytic Mechanism of Noble Metal Nanozymes. Nat. Commun. 2021, 12, 3375. [Google Scholar] [CrossRef]
- Cheng, Y.; Liang, L.; Ye, F.; Zhao, S. Ce-Mof with Intrinsic Haloperoxidase-Like Activity for Ratiometric Colorimetric Detection of Hydrogen Peroxide. Biosensors 2021, 11, 204. [Google Scholar] [CrossRef]
- Sun, D.; Zhao, Q.; Tan, F.; Wang, X.; Gao, J. Simultaneous Detection of Dopamine, Uric Acid, and Ascorbic Acid Using SnO2 Nanoparticles/Multi-Walled Carbon Nanotubes/Carbon Paste Electrode. Anal. Methods 2012, 4, 3283–3289. [Google Scholar] [CrossRef]
- Fan, K.; Xi, J.; Fan, L.; Wang, P.; Zhu, C.; Tang, Y.; Xu, X.; Liang, M.; Jiang, B.; Yan, X.; et al. In Vivo Guiding Nitrogen-Doped Carbon Nanozyme for Tumor Catalytic Therapy. Nat. Commun. 2018, 9, 1440. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, H.N.; Sharmoukh, W. Intrinsic Catalase-Mimicking MOFzyme for Sensitive Detection of Hydrogen Peroxide and Ferric Ions. Microchem. J. 2021, 163, 105873. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Feng, X.; Nie, F.; Yang, G. A Novel Copper-Based Metal-Organic Framework as a Peroxidase-Mimicking Enzyme and Its Glucose Chemiluminescence Sensing Application. Anal. Bioanal. Chem. 2021, 413, 4407–4416. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Du, X.; Zheng, Y.; Fu, W.; Zhang, Q.; Zhou, M. Interface-Confined Multi-Layered Reaction Centers between Ce-MOFs and Fe3O4@C for Heterogeneous Electro-Fenton at Wide pH 3–9: Mediation of Ce3+/Ce4+ and Oxygen Vacancy. Chem. Eng. J. 2022, 433, 133597. [Google Scholar] [CrossRef]
- Mak, K.F.; He, K.; Shan, J.; Heinz, T.F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012, 7, 494–498. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Fang, P.; Zhang, Z.; Zhang, J.Z. Synthesis, Properties, and Optoelectronic Applications of Two-Dimensional MoS2 and MoS2-Based Heterostructures. Chem. Soc. Rev. 2018, 47, 6101–6127. [Google Scholar] [CrossRef]
- Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H. Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001. [Google Scholar] [CrossRef]
- Su, S.; Lu, Z.; Li, J.; Hao, Q.; Liu, W.; Zhu, C.; Shen, X.; Shi, J.; Wang, L. MoS2–Au@Pt Nanohybrids as a Sensing Platform for Electrochemical Nonenzymatic Glucose Detection. New J. Chem. 2018, 42, 6750–6755. [Google Scholar] [CrossRef]
- Chen, X.; Park, Y.J.; Kang, M.; Kang, S.-K.; Koo, J.; Shinde, S.M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y.; et al. Cvd-Grown Monolayer MoS2 in Bioabsorbable Electronics and Biosensors. Nat. Commun. 2018, 9, 1690. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Feng, L.; Zheng, Y.; Luo, Y.; Zhu, D.; Chao, J.; Su, S.; Wang, L. Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application. Biosensors 2022, 12, 87. [Google Scholar] [CrossRef]
- Nirala, N.R.; Pandey, S.; Bansal, A.; Singh, V.K.; Mukherjee, B.; Saxena, P.S.; Srivastava, A. Different Shades of Cholesterol: Gold Nanoparticles Supported on MoS2 Nanoribbons for Enhanced Colorimetric Sensing of Free Cholesterol. Biosens. Bioelectron. 2015, 74, 207–213. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, S.; Yin, J.-J.; He, W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865. [Google Scholar] [CrossRef] [PubMed]
- Uemura, T.; Kitagawa, S. Prussian Blue Nanoparticles Protected by Poly(Vinylpyrrolidone). J. Am. Chem. Soc. 2003, 125, 7814–7815. [Google Scholar] [CrossRef] [PubMed]
- Shang, N.G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S.S.; Marchetto, H. Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Adv. Funct. Mater. 2008, 18, 3506–3514. [Google Scholar] [CrossRef]
- Raj, C.R.; Okajima, T.; Ohsaka, T. Gold Nanoparticle Arrays for the Voltammetric Sensing of Dopamine. J. Electroanal. Chem. 2003, 543, 127–133. [Google Scholar] [CrossRef]
- Sun, H.; Gao, Y.; Hu, N.; Zhang, Y.; Guo, C.; Gao, G.; Ma, Z.; Ivan Ivanovich, K.; Qiu, Y. Electronic Coupling between Molybdenum Disulfide and Gold Nanoparticles to Enhance the Peroxidase Activity for the Colorimetric Immunoassays of Hydrogen Peroxide and Cancer Cells. J. Colloid Interface Sci. 2020, 578, 366–378. [Google Scholar] [CrossRef]
- Zhang, X.; Zhi, H.; Zhu, M.; Wang, F.; Meng, H.; Feng, L. Electrochemical/Visual Dual-Readout Aptasensor for Ochratoxin a Detection Integrated into a Miniaturized Paper-Based Analytical Device. Biosens. Bioelectron. 2021, 180, 113146. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Bao, S.; Wang, M.; Qi, X.; Fan, Z.; Zhang, H. Solution-Phase Epitaxial Growth of Noble Metal Nanostructures on Dispersible Single-Layer Molybdenum Disulfide Nanosheets. Nat. Commun. 2013, 4, 1444. [Google Scholar] [CrossRef] [Green Version]
- Nagvenkar, A.P.; Gedanken, A. Cu0.89Zn0.11O, a New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection. ACS Appl. Mater. Interfaces 2016, 8, 22301–22308. [Google Scholar] [CrossRef]
- Agrawal, N.; Zhang, B.; Saha, C.; Kumar, C.; Kaushik, B.K.; Kumar, S. Development of Dopamine Sensor Using Silver Nanoparticles and PEG-Functionalized Tapered Optical Fiber Structure. IEEE. Trans. Biomed. Eng. 2020, 67, 1542–1547. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Liu, Y.; Zhao, Q.; Ding, F.; Zou, P.; Rao, H.; Wang, X. Colorimetric Determination of Dopamine by Exploiting the Enhanced Oxidase Mimicking Activity of Hierarchical NiCo2S4-rGO Composites. Microchim. Acta 2018, 185, 496. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, X.; Lv, C.; Liu, R.; Li, S.; Yang, G. A Novel bromelain-MnO2 Biosensor for Colorimetric Determination of Dopamine. New J. Chem. 2021, 45, 92–97. [Google Scholar] [CrossRef]
- Wang, H.-B.; Li, Y.; Dong, G.-L.; Gan, T.; Liu, Y.-M. A Convenient and Label-Free Colorimetric Assay for Dopamine Detection Based on the Inhibition of the Cu(II)-catalyzed Oxidation of a 3,3′,5,5′-Tetramethylbenzidine-H2O2 System. New J. Chem. 2017, 41, 14364–14369. [Google Scholar] [CrossRef]
- Duan, X.; Bai, Z.; Shao, X.; Xu, J.; Yan, N.; Shi, J.; Wang, X. Fabrication of Metal-Substituted Polyoxometalates for Colorimetric Detection of Dopamine and Ractopamine. Materials 2018, 11, 674. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Song, J.; Duan, X.; Mu, J.; Wang, Y. Perovskite LaCoO3 Nanoparticles as Enzyme Mimetics: Their Catalytic Properties, Mechanism and Application in Dopamine Biosensing. New J. Chem. 2017, 41, 8554–8560. [Google Scholar] [CrossRef]
- He, F.; Li, W.; Zhao, F.; Zhu, X.; Liu, Q.; Liu, Z.; Zhang, X.; Zhang, X. Pt Deposited on Magnetic CoFe2O4 Nanoparticles: Double Enzyme-Like Activity, Catalytic Mechanism and Fast Colorimetric Sensing of Dopamine. Microchem. J. 2020, 158, 105264. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, Y.; Chi, M.; Wang, C.; Wei, Y.; Lu, X. Fabrication of Cobalt Ferrite/Cobalt Sulfide Hybrid Nanotubes with Enhanced Peroxidase-Like Activity for Colorimetric Detection of Dopamine. J. Colloid Interface Sci. 2018, 511, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, T.; Qin, Y.; Zhang, L.; Chen, Y. Construct of Carbon Nanotube-Supported Fe2O3 Hybrid Nanozyme by Atomic Layer Deposition for Highly Efficient Dopamine Sensing. Front. Chem. 2020, 8, 564968. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M.N.; Grayfer, E.D.; Plotnikova, E.E.; Kibis, L.S.; Darabdhara, G.; Boruah, P.K.; Das, M.R.; Fedorov, V.E. Pt-Decorated Boron Nitride Nanosheets as Artificial Nanozyme for Detection of Dopamine. ACS Appl. Mater. Interfaces 2019, 11, 22102–22112. [Google Scholar] [CrossRef]
- Razavi, M.; Barras, A.; Ifires, M.; Swaidan, A.; Khoshkam, M.; Szunerits, S.; Kompany-Zareh, M.; Boukherroub, R. Colorimetric Assay for the Detection of Dopamine Using Bismuth Ferrite Oxide (Bi2Fe4O9) Nanoparticles as an Efficient Peroxidase-Mimic Nanozyme. J. Colloid Interface Sci. 2022, 613, 384–395. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, X.; Nie, W.; Wang, Y.; Gao, J.; Wen, W.; Selvaraj, J.N.; Zhang, X.; Wang, S. Hollow Copper Sulfide Nanocubes as Multifunctional Nanozymes for Colorimetric Detection of Dopamine and Electrochemical Detection of Glucose. Biosens. Bioelectron. 2019, 141, 111450. [Google Scholar] [CrossRef]
Enzyme | Substrate | Km (mM) | Vmax (10−8 M s−1) | Reference |
---|---|---|---|---|
MoS2-CPBNPs | TMB | 0.22 | 6.36 | This work |
MoS2-CPBNPs | H2O2 | 3.17 | 1.49 | This work |
HRP | TMB | 0.43 | 10.00 | [1] |
HRP | H2O2 | 3.70 | 8.71 | [1] |
Materials | Linear Range (μmol L−1) | Detection Limit (μmol L−1) | References |
---|---|---|---|
NiCo2S4-rGO | 0.5–100 | 0.42 | [30] |
bromelain-MnO2 | 0.1–10 | 0.04 | [31] |
Cu2+ | 1–50 | 1 | [32] |
SiW9Co3 | 5–100 | 5 | [33] |
LaCoO3 NPs | 0.5–20 | 0.19 | [34] |
Pt/CoFe2O4 | 20–80 | 0.42 | [35] |
CoFe2O4/CoS | 0–50 | 0.58 | [36] |
Fe2O3/CNTs | 0–25 | 0.11 | [37] |
Pt/hBNNS | 2–50 | 0.76 | [38] |
Bi2Fe4O9 | 0.15–50 | 0.05 | [39] |
h-CuS NCs | 2–150 | 1.67 | [40] |
MoS2-CPBNPs | 1–100 | 0.09 | This work |
Sample | Added (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 10.00 | 9.96 | 99.6 | 4.43 |
2 | 50.00 | 50.99 | 102.0 | 2.29 |
3 | 100.00 | 98.21 | 98.2 | 3.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Gong, L.; Miao, X.; Chen, C.; Su, S. Prussian Blue Nanoparticle Supported MoS2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine. Biosensors 2022, 12, 260. https://doi.org/10.3390/bios12050260
Zhu Z, Gong L, Miao X, Chen C, Su S. Prussian Blue Nanoparticle Supported MoS2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine. Biosensors. 2022; 12(5):260. https://doi.org/10.3390/bios12050260
Chicago/Turabian StyleZhu, Zhiqiang, Lingbo Gong, Xiangyang Miao, Chaoyang Chen, and Shao Su. 2022. "Prussian Blue Nanoparticle Supported MoS2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine" Biosensors 12, no. 5: 260. https://doi.org/10.3390/bios12050260
APA StyleZhu, Z., Gong, L., Miao, X., Chen, C., & Su, S. (2022). Prussian Blue Nanoparticle Supported MoS2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine. Biosensors, 12(5), 260. https://doi.org/10.3390/bios12050260