Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microfluidic Fabrication and Droplet Production
3. Results and Discussions
3.1. Dynamic Molecular Reconfiguration of High-Chirality Droplets in the Presence of DLPC
3.2. Dynamic Molecular Reconfiguration of Low-Chirality Droplets in the Presence of DLPC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Contest Statement:
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woltman, S.J.; Crawford, G.P.; Jay, G.D. Liquid Crystals: Frontiers in Biomedical Applications; World Scientific: Singapore, 2007. [Google Scholar]
- Gray, G.W.; Harrison, K.J.; Nash, J.A. New family of nematic liquid crystals for displays. Electron. Lett. 1973, 9, 130–131. [Google Scholar] [CrossRef]
- Oswald, P.; Pieranski, P. Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Tabe, Y.; Urayama, K.; Matsuyama, A.; Yamamoto, J.; Yoneya, M. Physics of liquid crystals. In The Liquid Crystal Display Story; Springer: Berlin/Heidelberg, Germany, 2014; pp. 301–356. [Google Scholar]
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Bai, Y.; Abbott, N.L. Recent advances in colloidal and interfacial phenomena involving liquid crystals. Langmuir 2011, 27, 5719–5738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brake, J.M.; Mezera, A.D.; Abbott, N.L. Effect of surfactant structure on the orientation of liquid crystals at aqueous−liquid crystal interfaces. Langmuir 2003, 19, 6436–6442. [Google Scholar] [CrossRef]
- Norouzi, S.; Sadati, M. Liquid crystal based-biosensors. Ann. Biostat. Biom. Appl. 2021, 4. [Google Scholar]
- Popov, P.; Mann, E.K.; Jákli, A. Thermotropic liquid crystal films for biosensors and beyond. J. Mater. Chem. B 2017, 5, 5061–5078. [Google Scholar] [CrossRef]
- Tsujinoue, H.; Inokuchi, T.; Arai, N. Polymorphic transitions mediated by surfactants in liquid crystal nanodroplet. Liq. Cryst. 2019, 46, 1428–1439. [Google Scholar] [CrossRef]
- Sadati, M.; Apik, A.I.; Armas-Perez, J.C.; Martinez-Gonzalez, J.; Hernandez-Ortiz, J.P.; Abbott, N.L.; de Pablo, J.J. Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers. Adv. Funct. Mater. 2015, 25, 6050–6060. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, T.; Noel, A.; Chen, Y.C.; Liu, T. Applications of liquid crystals in biosensing. Soft Matter 2021, 17, 4675–4702. [Google Scholar] [CrossRef]
- Woltman, S.J.; Jay, G.D.; Crawford, G.P. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 2007, 6, 929–938. [Google Scholar] [CrossRef]
- Manna, U.; Zayas-Gonzalez, Y.M.; Carlton, R.J.; Caruso, F.; Abbott, N.L.; Lynn, D.M. Liquid crystal chemical sensors that cells can wear. Angew. Chem. Int. Ed. 2013, 52, 14011–14015. [Google Scholar] [CrossRef]
- Munir, S.; Kang, I.K.; Park, S.Y. Polyelectrolytes functionalized nematic liquid crystal-based biosensors: An overview. Trends Anal. Chem. 2016, 83, 80–94. [Google Scholar] [CrossRef]
- Choudhary, A.; George, T.F.; Li, G. Conjugation of nanomaterials and nematic liquid crystals for futuristic applications and biosensors. Biosensors 2018, 8, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, B.J.; Boursier, M.E.; Barrett, K.L.; Manson, D.E.; Amador-Noguez, D.; Abbott, N.L.; Blackwell, H.E.; Lynn, D.M. Liquid crystal emulsions that intercept and report on bacterial quorum sensing. ACS Appl. Mater. Interfaces 2020, 12, 29056–29065. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Wark, K.L.; Gupta, J.K.; Abbott, N.L.; Caruso, F. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv. Funct. Mater. 2009, 19, 2260–2265. [Google Scholar] [CrossRef]
- Sidiq, S.; Das, D.; Pal, S.K. A new pathway for the formation of radial nematic droplets within a lipid-laden aqueous-liquid crystal interface. RSC Adv. 2014, 4, 18889–18893. [Google Scholar] [CrossRef]
- Carter, M.C.; Miller, D.S.; Jennings, J.; Wang, X.; Mahanthappa, M.K.; Abbott, N.L.; Lynn, D.M. Synthetic mimics of bacterial lipid A trigger optical transitions in liquid crystal microdroplets at ultralow picogram-per-milliliter concentrations. Langmuir 2015, 31, 12850–12855. [Google Scholar] [CrossRef]
- Pani, I.; Nazreen KM, F.; Sharma, M.; Pal, S.K. Probing Nanoscale Lipid–Protein Interactions at the Interface of Liquid Crystal Droplets. Nano Lett. 2021, 21, 4546–4553. [Google Scholar] [CrossRef]
- Lin, I.H.; Miller, D.S.; Bertics, P.J.; Murphy, C.J.; De Pablo, J.J.; Abbott, N.L. Endotoxin-induced structural transformations in liquid crystalline droplets. Science 2011, 332, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Paterson, D.A.; Bao, P.; Abou-Saleh, R.H.; Peyman, S.A.; Jones, J.C.; Sandoe, J.A.; Evans, S.D.; Gleeson, H.F.; Bushby, R.J. Control of director fields in phospholipid-coated liquid crystal droplets. Langmuir 2020, 36, 6436–6446. [Google Scholar] [CrossRef]
- Bao, P.; Paterson, D.A.; Harrison, P.L.; Miller, K.; Peyman, S.; Jones, J.C.; Sandoe, J.; Evans, S.D.; Bushby, R.J.; Gleeson, H.F. Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides. Lab. Chip 2019, 19, 1082–1089. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Khan, M.; Park, S.Y. Glucose sensor using liquid-crystal droplets made by microfluidics. ACS Appl. Mater. Interfaces 2013, 5, 13135–13139. [Google Scholar] [CrossRef] [PubMed]
- Gollapelli, B.; Tatipamula, A.K.; Dewanjee, S.; Pathinti, R.S.; Vallamkondu, J. Detection of bile acids using optical biosensors based on cholesteric liquid crystal droplets. J. Mater. Chem. C 2021, 9, 13991–14002. [Google Scholar] [CrossRef]
- Lee, H.G.; Munir, S.; Park, S.Y. Cholesteric liquid crystal droplets for biosensors. ACS Appl. Matter. Interfaces 2016, 8, 26407–26417. [Google Scholar] [CrossRef] [PubMed]
- Concellón, A.; Fong, D.; Swager, T.M. Complex liquid crystal emulsions for biosensing. J. Am. Chem. Soc. 2021, 143, 9177–9182. [Google Scholar] [CrossRef]
- Honaker, L.W.; Chen, C.; Dautzenberg, F.M.H.; Brugman, S.; Deshpande, S. Designing Biological Micro-Sensors with Chiral Nematic Liquid Crystal Droplets. bioRxiv 2021, 10, 465736. [Google Scholar] [CrossRef]
- Paterson, D.A.; Du, X.; Bao, P.; Parry, A.A.; Peyman, S.A.; Sandoe, J.A.; Evans, S.D.; Luo, D.; Bushby, R.J.; Jones, J.C.; et al. Chiral nematic liquid crystal droplets as a basis for sensor systems. Mol. Syst. Des. Eng. 2022. [Google Scholar] [CrossRef]
- Bajc, J.; Bezic, J.; Zumer, S. Chiral nematic droplets with tangential anchoring and negative dielectric aniostropy in an electric field. Phys. Rev. E 1995, 51, 2176. [Google Scholar] [CrossRef]
- Xu, F.; Crooker, P.P. Chiral nematic droplets with parallel surface anchoring. Phys. Rev. E 1997, 56, 6853. [Google Scholar] [CrossRef]
- Posnjak, G.; Čopar, S.; Muševič, I. Points, skyrmions and torons in chiral nematic droplets. Sci. Rep. 2016, 6, 26361. [Google Scholar] [CrossRef]
- Tomar, V.; Hernandez, S.I.; Abbott, N.L.; Hernández-Ortiz, J.P.; De Pablo, J.J. Morphological transitions in liquid crystal nanodroplets. Soft Matter 2012, 8, 8679–8689. [Google Scholar] [CrossRef]
- Zhou, Y.; Bukusoglu, E.; Martínez-González, J.A.; Rahimi, M.; Roberts, T.F.; Zhang, R.; Wang, X.; Abbott, N.L.; De Pablo, J.J. Structural transitions in cholesteric liquid crystal droplets. ACS Nano 2016, 10, 6484–6490. [Google Scholar] [CrossRef] [PubMed]
- Krakhalev, M.N.; Rudyak, V.Y.; Prishchepa, O.O.; Gardymova, A.P.; Emelyanenko, A.V.; Liu, J.H.; Zyryanov, V.Y. Orientational structures in cholesteric droplets with homeotropic surface anchoring. Soft Matter 2019, 15, 5554–5561. [Google Scholar] [CrossRef] [PubMed]
- Bedolla Pantoja, M.A.; Yang, Y.; Abbott, N.L. Toluene-induced phase transitions in blue phase liquid crystals. Liq. Cryst. 2019, 46, 1925–1936. [Google Scholar] [CrossRef]
- Utada, A.S.; Chu, L.Y.; Fernandez-Nieves, A.; Link, D.R.; Holtze, C.; Weitz, D.A. Dripping, jetting, drops, and wetting: The magic of microfluidics. Mrs Bull. 2007, 32, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Cumberland, J.; Lopatkina, T.; Murachver, M.; Popov, P.; Kenderesi, V.; Buka, Á.; Mann, E.K.; Jákli, A. Bending nematic liquid crystal membranes with phospholipids. Soft Matter 2018, 14, 7003–7008. [Google Scholar] [CrossRef]
- Popov, P. Liquid Crystal Interfaces: Experiments, Simulations and Biosensors. Ph.D. Thesis, Kent State University, Kent, OH, USA, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norouzi, S.; Martinez Gonzalez, J.A.; Sadati, M. Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles. Biosensors 2022, 12, 313. https://doi.org/10.3390/bios12050313
Norouzi S, Martinez Gonzalez JA, Sadati M. Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles. Biosensors. 2022; 12(5):313. https://doi.org/10.3390/bios12050313
Chicago/Turabian StyleNorouzi, Sepideh, Jose A. Martinez Gonzalez, and Monirosadat Sadati. 2022. "Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles" Biosensors 12, no. 5: 313. https://doi.org/10.3390/bios12050313
APA StyleNorouzi, S., Martinez Gonzalez, J. A., & Sadati, M. (2022). Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles. Biosensors, 12(5), 313. https://doi.org/10.3390/bios12050313