Electrochemical DNA Sensor Based on Carbon Black—Poly(Methylene Blue)—Poly(Neutral Red) Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Thiacalix [4]arene Derivatives Bearing Ammonia Groups
2.3. Electrochemical Instrumentation
2.4. Scanning Electron Microscopy
2.5. Modification of the Working Electrode
2.6. Electropolymerization of MB and NR
2.7. DNA Biosensor Assembling and Signal Measurements
3. Results
3.1. Electrochemical Characterization of the Electrode Modification
3.2. SEM Measurements
3.3. DNA and Doxorubicin Influence
3.4. Measurement Precision and DNA Sensor Lifetime
3.5. Real Sample Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatt, G.; Bhattacharya, S. DNA-based sensors. In Environmental, Chemical and Medical Sensors; Bhattacharya, S., Agarwal, A.K., Chanda, N., Pandey, A., Sen, A.K., Eds.; Springer: Singapore, 2018; pp. 343–372. [Google Scholar]
- Yu, D.; Blankert, B.; Viré, J.-C.; Kauffmann, J.-M. Biosensors in drug discovery and drug analysis. Anal. Lett. 2005, 38, 1687–1701. [Google Scholar] [CrossRef]
- Pollard, T.D.; Ong, J.J.; Goyanes, O.; Orlu, M.; Gaisford, S.; Elbadawi, M.; Basit, A.W. Electrochemical biosensors: A nexus for precision medicine. Drug Discov. Today 2021, 26, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Tarun, M.; Bajrami, B.; Rusling, J.F. Genotoxicity screening using biocatalyst/DNA films and capillary LC−MS/MS. Anal. Chem. 2006, 78, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Marrazza, G.; Chianella, I.; Mascini, M. Disposable DNA electrochemical biosensors for environmental monitoring. Anal. Chim. Acta 1999, 387, 297–307. [Google Scholar] [CrossRef]
- Leonardi, A.A.; Faro, M.J.L.; Irrera, A. Biosensing platforms based on silicon nanostructures: A critical review. Anal. Chim. Acta 2021, 1160, 338393. [Google Scholar] [CrossRef]
- Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement 2021, 167, 108293. [Google Scholar] [CrossRef]
- Luong, J.H.T.; Male, K.B.; Glennon, J.D. Biosensor technology: Technology push versus market pull. Biotechnol. Adv. 2008, 26, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Mousazadeh, F.; Mohammadi, S.Z.; Akbari, S.; Mofidinasab, N.; Aflatoonian, M.R. Recent advantages of mediator based chemically modified electrodes, powerful approach in electroanalytical chemistry. Curr. Anal. Chem. 2022, 18, 6–30. [Google Scholar] [CrossRef]
- Stradiotto, N.R.; Yamanaka, H.; Zanoni, M.V.B. Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc. 2003, 14, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec. 2020, 20, 682–692. [Google Scholar] [CrossRef]
- de-los-Santos-Álvarez, P.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Current strategies for electrochemical detection of DNA with solid electrodes. Anal. Bioanal. Chem. 2004, 378, 104–118. [Google Scholar] [CrossRef] [PubMed]
- Ferapontova, E.E. DNA electrochemistry and electrochemical sensors for nucleic acids. Annu. Rev. Anal. Chem. 2018, 11, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Pellitero, M.A.; Shaver, A.; Arroyo-Currás, N. Critical review—Approaches for the electrochemical interrogation of DNA-based sensors: A critical review. J. Electrochem. Soc. 2020, 167, 037529. [Google Scholar] [CrossRef]
- Lin, C.; Wu, Y.; Luo, F.; Chen, D.; Chen, X. A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy. Biosens. Bioelectron. 2014, 59, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.U.; Nahar, S.; Safavieha, M.; Zourob, M. Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe. Analyst 2013, 138, 907–915. [Google Scholar] [CrossRef]
- Wei, M.-Y.; Guo, L.-H.; Famouri, P. DNA biosensors based on metallo-intercalator probes and electrocatalytic amplification. Microchim. Acta 2011, 172, 247–260. [Google Scholar] [CrossRef]
- Nano, A.; Furst, A.L.; Hill, M.G.; Barton, J.K. DNA electrochemistry: Charge-transport pathways through DNA films on gold. J. Am. Chem. Soc. 2021, 143, 11631–11640. [Google Scholar] [CrossRef]
- Evtugyn, G.; Hianik, T. Electrochemical DNA sensors and aptasensors based on electropolymerized materials and polyelectrolyte complexes. TrAC Trends Anal. Chem. 2016, 79, 168–178. [Google Scholar] [CrossRef]
- Saberi, R.-S.; Shahrokhian, S.; Marrazza, G. Amplified electrochemical DNA sensor based on polyaniline film and gold nanoparticles. Electroanalysis 2013, 25, 1373–1380. [Google Scholar] [CrossRef]
- Ren, R.; Leng, C.; Zhang, S. A chronocoulometric DNA sensor based on screen-printed electrode doped with ionic liquid and polyaniline nanotubes. Biosens. Bioelectron. 2010, 25, 2089–2094. [Google Scholar] [CrossRef]
- Chen, H.; Xiang, Y.; Cai, R.; Zhang, L.; Zhang, Y.; Zhou, N. An ultrasensitive biosensor for dual-specific DNA based on deposition of polyaniline on a self-assembled multi-functional DNA hexahedral-nanostructure. Biosens. Bioelectron. 2021, 179, 113066. [Google Scholar] [CrossRef] [PubMed]
- Evtugyn, G.A.; Stepanova, V.B.; Porfireva, A.V.; Zamaleeva, A.I.; Fakhrullin, R.R. Electrochemical DNA sensors based on nanostructured organic dyes/DNA/polyelectrolyte complexes. J. Nanosci. Nanotechnol. 2014, 14, 6738–6747. [Google Scholar] [CrossRef] [PubMed]
- Kuzin, Y.; Kappo, D.; Porfireva, A.; Shurpik, D.; Stoikov, I.; Evtugyn, G.; Hianik, T. Electrochemical DNA sensor based on carbon black—Poly(Neutral red) composite for detection of oxidative DNA damage. Sensors 2018, 18, 3489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzin, Y.; Ivanov, A.; Evtugyn, G.; Hianik, T. Voltammetric detection of oxidative DNA damage based on interactions between polymeric dyes and DNA. Electroanalysis 2016, 28, 2956–2964. [Google Scholar] [CrossRef]
- Porfireva, A.; Evtugyn, G. Electrochemical DNA sensor based on the copolymer of proflavine and Azure B for doxorubicin determination. Nanomaterials 2020, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- Stoikov, D.I.; Porfir’eva, A.V.; Shurpik, D.N.; Stoikov, I.I.; Evtyugin, G.A. Electrochemical DNA sensors on the basis of electropolymerized thionine and Azure B with addition of pillar[5]arene as an electron transfer mediator. Russ. Chem. Bull. 2019, 68, 431–437. [Google Scholar] [CrossRef]
- Porfir’eva, A.V.; Shibaeva, K.S.; Evtyugin, V.G.; Yakimova, L.S.; Stoikov, I.I.; Evtyugin, G.A. An electrochemical DNA sensor for doxorubicin based on a polyelectrolyte complex and aminated thiacalix[4]arene. J. Anal. Chem. 2019, 74, 707–714. [Google Scholar] [CrossRef]
- Lerman, L.S. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 1961, 3, 18–30. [Google Scholar] [CrossRef]
- Tewey, K.M.; Rowe, T.C.; Yang, L.; Halligan, B.D.; Liu, L.F. Adriamycin-induced DNA damage mediate by mammalian DNA topoisomerase II. Science 1984, 226, 466–468. [Google Scholar] [CrossRef]
- Hurley, L.H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2002, 2, 188–200. [Google Scholar] [CrossRef]
- Ogoshi, T.; Aoki, T.; Kitajima, K.; Fujinami, S.; Yamagishi, T.-A.; Nakamoto, Y. Facile, rapid, and high-yield synthesis of pillar[5]arene from commercially available reagents and its X-ray crystal structure. J. Org. Chem. 2011, 76, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Padnya, P.L.; Andreyko, E.A.; Gorbatova, P.A.; Parfenov, V.V.; Rizvanov, I.K.; Stoikov, I.I. Towards macrocyclic ionic liquids: Novel ammonium salts based on tetrasubstituted p-tert-butylthiacalix[4]arenes. RSC Adv. 2017, 7, 1671–1686. [Google Scholar] [CrossRef] [Green Version]
- Parham, H.; Zargar, B. Determination of isosorbide dinitrate in arterial plasma, synthetic serum and pharmaceutical formulations by linear sweep voltammetry on a gold electrode. Talanta 2001, 55, 255–262. [Google Scholar] [CrossRef]
- Kappo, D.; Kuzin, Y.I.; Shurpik, D.N.; Stoikov, I.I.; Evtyugin, G.A. Voltammetric DNA sensor based on redox-active dyes for determining doxorubicin. J. Anal. Chem. 2022, 77, 94–100. [Google Scholar] [CrossRef]
- Kulikova, T.; Padnya, P.; Shiabiev, I.; Rogov, A.; Stoikov, I.; Evtugyn, G. Electrochemical sensing of interactions between DNA and charged macrocycles. Chemosensors 2021, 9, 347. [Google Scholar] [CrossRef]
- Guidelli, R.; Compton, R.G.; Feliu, J.M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. Defining the transfer coefficient in electrochemistry: An assessment (IUPAC technical report). Pure Appl. Chem. 2014, 86, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Pauliukaite, R.; Brett, C.M.A. Poly(neutral red): Electrosynthesis, characterization, and application as a redox mediator. Electroanalysis 2008, 20, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, P.M.; Hasanzadeh, M.; Soleymani, J.; Gharamaleki, J.V.; Jouyban, A. Application of bioactive cyclic oligosaccharide on the detection of doxorubicin hydrochloride in unprocessed human plasma sample: A new platform towards efficient chemotherapy. Microchem. J. 2019, 145, 450–455. [Google Scholar] [CrossRef]
- Ehsani, M.; Soleymani, J.; Mohammadalizadeh, P.; Hasanzadeh, M.; Jouyban, A.; Khoubnasabjafari, M.; Vaez-Gharamaleki, Y. Low potential detection of doxorubicin using a sensitive electrochemical sensor based on glassy carbon electrode modified with silver nanoparticles-supported poly(chitosan): A new platform in pharmaceutical analysis. Microchem. J. 2021, 165, 106101. [Google Scholar] [CrossRef]
- Materon, E.M.; Wong, A.; Fatibello-Filho, O.; Faria, R.C. Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J. Electroanal. Chem. 2018, 827, 64–72. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Li, Y.; Shen, Y.; Huang, Y. Mesoporous Pd@Pt core-shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: Application in simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib. Anal. Methods. 2019, 11, 443–453. [Google Scholar] [CrossRef]
- Karadurmus, L.; Dogan-Topal, B.; Kurbanoglu, S.; Shah, A.; Ozkan, S.A. The interaction between DNA and three intercalating anthracyclines using electrochemical DNA nanobiosensor based on metal nanoparticles modified screen-printed electrode. Micromachines 2021, 12, 1337. [Google Scholar] [CrossRef] [PubMed]
- Hassani Moghadam, F.; Taher, M.T.; Karimi-Maleh, H. Doxorubicin anticancer drug monitoring by ds-DNA-based electrochemical biosensor in clinical samples. Micromachines 2021, 12, 808. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.; Xu, H.; Luo, C.; Ding, H. Application of a disposable doxorubicin sensor for direct determination of clinical drug concentration in patient blood. Int. J. Electrochem. Sci. 2016, 11, 6266–6278. [Google Scholar] [CrossRef]
- Kulikova, T.; Porfireva, A.; Evtugyn, G.; Hianik, T. Electrochemical DNA sensors with layered polyaniline-DNA coating for detection of specific DNA interactions. Sensors 2019, 19, 469. [Google Scholar] [CrossRef] [Green Version]
- Shamagsumova, R.; Porfireva, A.; Stepanova, V.; Osin, Y.; Evtugyn, G.; Hianik, T. Polyaniline-DNA based sensor for the detection of anthracycline drugs. Sens. Actuators B 2015, 220, 573–582. [Google Scholar] [CrossRef]
- Rahman, A.M.; Yusuf, S.W.; Ewer, M.S. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int. J. Nanomed. 2007, 2, 567–583. [Google Scholar]
Surface Layer | NR Oxidation Peak | NR Reduction Peak | ||||
---|---|---|---|---|---|---|
a ± Δa | b ± Δb | R2 | a ± Δa | b ± Δb | R2 | |
Regression Equation: log(Ip, μA) = a + b × log(ν, V/s) | ||||||
Poly(MB)-poly(NR) | 0.016 ± 0.029 | 0.774 ± 0.014 | 0.9959 | 0.153 ± 0.029 | 0.758 ± 0.015 | 0.9955 |
Poly(MB)-poly(NR)-TC-cone | 0.056 ± 0.034 | 0.696 ± 0.018 | 0.9906 | −0.041 ± 0.004 | 0.715 ± 0.019 | 0.9939 |
Poly(MB)-poly(NR)-TC-cone-DNA | −0.208 ± 0.018 | 0.783 ± 0.009 | 0.9984 | −0.298 ± 0.026 | 0.826 ± 0.013 | 0.9975 |
Regression equation: E, mV = a + b × pH | ||||||
Poly(MB)-poly(NR), pH = 3–5 | −0.157 ± 0.008 | −0.038 ± 0.001 | 0.9929 | −0.144 ± 0.017 | −0.085 ± 0.004 | 0.9953 |
pH = 5–8 | −0.369 ± 0.021 | −0.041 ± 0.003 | 0.9816 | |||
Poly(MB)-poly(NR)-TC-cone, pH = 3–5 | −0.123 ± 0.026 | −0.048 ± 0.006 | 0.9652 | −0.144 ± 0.016 | −0.093 ± 0.004 | 0.9961 |
Poly(MB)-poly(NR)-TC-cone, pH = 6–8 | −0.097 ± 0.060 | −0.048 ± 0.009 | 0.9373 | −0.387 ± 0.033 | −0.041 ± 0.005 | 0.9728 |
Poly(MB)-poly(NR)-TC-cone-DNA, pH = 3–5 | −0.124 ± 0.023 | −0.048 ± 0.006 | 0.9710 | −0.176 ± 0.008 | −0.084 ± 0.002 | 0.9990 |
Poly(MB)-poly(NR)-TC-cone-DNA, pH = 6–8 | −0.150 ± 0.062 | −0.030 ± 0.009 | 0.9061 | −0.350 ± 0.011 | −0.045 ± 0.002 | 0.9975 |
Surface Layer Content | Concentration Range | LOD, nM | Refs. |
---|---|---|---|
Voltametric Sensors | |||
Graphene, poly(taurine), β-cyclodextrin | 6 nM–3.45 μM | 12 | [39] |
Ag nanoparticles, chitosan | 0.103–3.6 μM | 103 | [40] |
CB, Cu nanoparticles, Nafion | 0.45–5.1 μM | 24 | [41] |
Multi-wall carbon nanotubes, mesoporous Pd and Pt particles | 4.4 nM–8.58 μM | 0.86 | [42] |
DNA sensors | |||
Poly(Azure B–proflavine) | 0.03–10 nM | 0.01 | [26] |
Polyaniline or poly(NR), aminated thiacalix [4]arene | 1 nM–50 μM | 0.1 | [28] |
CB, P [5]A, poly(NR), monomer of MB | 10 nM–0.1 mM | 3 | [35] |
CB, chitosan, aminated thiacalix [4]arene | 10 pM–1 nM | 0.0003 | [36] |
Pt and Ag nanoparticles | 172 pM–1.72 nM | - | [43] |
Single-wall carbon nanotubes | 1.0 nM–20 μM | 0.6 | [44] |
Multi-wall carbon nanotubes, poly(L-lysine) | 2.5 nM–0.25 μM | 1.0 | [45] |
Polyaniline layered films | 1.0 pM–1 mM | 0.0006 | [46] |
CB, P [5]A, poly(MB), poly(NR), thiacalix [4]arene with quaternary ammonium terminal groups | 0.5 pM–1.0 nM | 0.00013 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kappo, D.; Shurpik, D.; Padnya, P.; Stoikov, I.; Rogov, A.; Evtugyn, G. Electrochemical DNA Sensor Based on Carbon Black—Poly(Methylene Blue)—Poly(Neutral Red) Composite. Biosensors 2022, 12, 329. https://doi.org/10.3390/bios12050329
Kappo D, Shurpik D, Padnya P, Stoikov I, Rogov A, Evtugyn G. Electrochemical DNA Sensor Based on Carbon Black—Poly(Methylene Blue)—Poly(Neutral Red) Composite. Biosensors. 2022; 12(5):329. https://doi.org/10.3390/bios12050329
Chicago/Turabian StyleKappo, Dominica, Dmitry Shurpik, Pavel Padnya, Ivan Stoikov, Alexey Rogov, and Gennady Evtugyn. 2022. "Electrochemical DNA Sensor Based on Carbon Black—Poly(Methylene Blue)—Poly(Neutral Red) Composite" Biosensors 12, no. 5: 329. https://doi.org/10.3390/bios12050329
APA StyleKappo, D., Shurpik, D., Padnya, P., Stoikov, I., Rogov, A., & Evtugyn, G. (2022). Electrochemical DNA Sensor Based on Carbon Black—Poly(Methylene Blue)—Poly(Neutral Red) Composite. Biosensors, 12(5), 329. https://doi.org/10.3390/bios12050329