Two-Dimensional Ti3C2 MXene-Based Novel Nanocomposites for Breath Sensors for Early Detection of Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electron Characterization of Sensing Materials
3.2. Sensitivity Testing
3.3. Semiconductor Resistance
3.4. Selectivity Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 11 March 2022).
- Mayo Clinic. Blood Sugar Testing: Why, When and How. Available online: https://www.mayoclinic.org/diseases-conditions/diabetes/in-depth/blood-sugar/art-20046628 (accessed on 11 March 2022).
- Saasa, V.; Malwela, T.; Beukes, M.; Mokgotho, M.; Liu, C.-P.; Mwakikunga, B. Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 2018, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodbard, D. Continuous Glucose Monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 2016, 18, S2-3–S2-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Calibration of minimally invasive continuous glucose monitoring sensors: State-of-the-art and current perspectives. Biosensors 2018, 8, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsden, J.; Pickering, D. Urine Testing for Diabetic Analysis. Community Eye Health 2015, 28, 77. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944103/#__ffn_sectitle (accessed on 11 March 2022).
- Cao, W.; Duan, Y. Current Status of Methods and Techniques for Breath Analysis. Crit. Rev. Anal. Chem. 2007, 37, 3–13. [Google Scholar] [CrossRef]
- Rydosz, A. A negative correlation between blood glucose and acetone measured in healthy and type 1 diabetes mellitus patient breath. J. Diabetes Sci. Technol. 2015, 9, 881–884. [Google Scholar] [CrossRef]
- Ryabtsev, S.V.; Shaposhnick, A.V.; Lukin, A.N.; Domashevskaya, E.P. Application of semiconductor gas sensors for Medical Diagnostics. Sens. Actuators Chem. 1999, 59, 26–29. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to comprehensive disease detection. Acc. Chem. Res. 2013, 47, 66–76. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef]
- Korotcenkov, G. Gas response control through structural and chemical modification of Metal Oxide Films: State of the art and approaches. Sens. Actuators Chem. 2005, 107, 209–232. [Google Scholar] [CrossRef]
- Usman, F.; Dennis, J.O.; Ahmed, A.Y.; Meriaudeau, F.; Ayodele, O.B.; Rabih, A.A. A review of biosensors for non-invasive diabetes monitoring and screening in human exhaled breath. IEEE Access 2018, 7, 5963–5974. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Anal. Lett. 2001, 34, 635–659. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, D. Room temperature acetone sensor based on nanostructured K2W7O22. 2016 IEEE Sens. 2016, 1–3. [Google Scholar] [CrossRef]
- Hossain, M.R.; Schornack, A.M.; Johnson, M.; Zhang, Q.; Wang, D. The Temperature Effect on the Performance of Acetone Sensor Based on K2W7O22 Nanorods. J. Nanosci. Nanotechnol. Appl. 2021, 5, 1. [Google Scholar]
- Johnson, M.; Zhang, Q.; Wang, D. Room-temperature ferroelectric K2W7O22 (KWO) nanorods as a sensor material for the detection of acetone. Med. Devices Sens. 2019, 2, e10044. [Google Scholar] [CrossRef]
- Ama, O.; Sadiq, M.; Johnson, M.; Zhang, Q.; Wang, D. Novel 1D/2D KWO/Ti3C2Tx nanocomposite-based acetone sensor for diabetes prevention and monitoring. Chemosensors 2020, 8, 102. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Q.; Hossain, M.R.; Johnson, M. High sensitive breath sensor based on nanostructured K2W7O22 for detection of type 1 diabetes. IEEE Sens. J. 2018, 18, 4399–4404. [Google Scholar] [CrossRef]
- Hossain, M.; Zhang, Q.; Johnson, M.; Wang, D. Highly sensitive room-temperature sensor based on nanostructured K2W7O22 for application in the non-invasive diagnosis of diabetes. Sensor 2018, 18, 3703. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, M.; Pang, L.; Michael, J.; Venkatachalem, S.; Zhang, Q.; Wang, D. 2D Nanomaterial, Ti3C2 MXene-based sensor to guide lung cancer therapy and management. Biosensors 2021, 11, 40. [Google Scholar] [CrossRef]
- Johnson, M.; Schornack, A.M.; Zhang, Q.; Wang, D. Optical and Mechanical Properties of MXenes. MXenes and Their Composites: Synthesis, Properties and Potential Applications; Elsevier Publisher: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Yoon, J.; Shin, M.; Lim, J.; Lee, J.-Y.; Choi, J.-W. Recent advances in MXene nanocomposite-based biosensors. Biosensors 2020, 10, 185. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Mashtalir, O.; Ren, C.E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P.L.; Naguib, M.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505. [Google Scholar] [CrossRef] [Green Version]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, M.; Arai, M.; Sasaki, T.; Ranjbar, A.; Liang, Y.; Yunoki, S. OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Phys. Rev. B 2015, 92, 075411. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Yang, K.; Peng, H.; Li, F.; Yin, F. A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A 2018, 6, 18116–18124. [Google Scholar] [CrossRef]
- Allah, A.E.; Wang, J.; Kaneti, Y.V.; Li, T.; Farghali, A.A.; Khedr, M.H.; Nanjundan, A.K.; Ding, B.; Dou, H.; Zhang, X.; et al. Auto-programmed heteroarchitecturing: Self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers. Nano Energy 2019, 65, 103991. [Google Scholar] [CrossRef]
- Johnson, M.; Wang, D.L.; Zhang, Q.F. Titanium Carbide MXene: Synthesis, Electrical and Optical Properties and Their Applications in Sensors and Energy Storage Devices. Nanomater. Nanotechnol. 2019, 9, 1–9. [Google Scholar]
- Wang, L.; Teleki, A.; Pratsinis, S.E.; Gouma, P.I. Ferroelectric WO3 Nanoparticles for Acetone Selective Detection. Chem. Mater. 2008, 20, 4794–4796. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for Gas Sensing: A Review. Sens. Actuators B Chem. 2014, 2, 250–272. [Google Scholar] [CrossRef]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [Green Version]
- Min, X.J.; Hu, X.F.; Quan, W.; Wang, X.; Zhang, W. Ultra-highly sensitive detection of ppb-level acetone gas using novel multicore-shell porous zinc oxide microspheres. Ceram. Int. 2021, 47, 13745–13755. [Google Scholar]
- Li, W.Q.; Ma, S.Y.; Luo, J.; Mao, Y.Z.; Cheng, L.; Gengzang, D.J.; Xu, X.L.; Yan, S.H. Synthesis of hollow SnO2 nanobelts and their application in acetone sensor. Mater. Lett. 2014, 132, 338–341. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Yang, Q.; Sun, P.; Gao, Y.; Liu, F.; Zheng, J.; Lu, G. Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuators B Chem. 2015, 220, 59–67. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T.; Deng, J.; Zhang, R.; Lou, Z.; Wang, L. P-type Co3O4 Nanomaterials-Based Gas Sensor: Preparation and Acetone Sensing Performance. Sens. Actuators B Chem. 2016, 242, 369–377. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, M.; Hua, Z.Q.; Yuan, W.; Wu, Y.; Tian, X.; Song, T. Investigation on acetone sensing properties and mechanism of p-type Cr2WO6 nanoparticles. J. Mater. Sci. Mater. Electron. 2020, 31, 3899–3909. [Google Scholar] [CrossRef]
- Xu, H.; Gao, J.; Li, M.; Zhao, Y.; Zhang, M.; Zhao, T.; Wang, L.; Jiang, W.; Zhu, G.; Qian, X.; et al. Mesoporous WO3 Nanofibers with Crystalline Framework for High-Performance Acetone Sensing. Front. Chem. 2019, 7, 266. [Google Scholar] [CrossRef]
- Nasiri, N.; Clarke, C. Nanostructured Chemiresistive Gas Sensors for Medical Applications. Sensors 2019, 19, 462. [Google Scholar] [CrossRef] [Green Version]
- Simon, I.; Bârsan, N.; Bauer, M.; Weimar, U. Micromachined Metal Oxide Gas Sensors: Opportunities to Improve Sensor Performance. Sens. Actuators B Chem. 2001, 73, 1–26. [Google Scholar] [CrossRef]
- Tosoni, S.; di Valentin, C.; Pacchioni, G. Effect of Alkali Metals Interstitial Doping on Structural and Electronic Properties of WO3. J. Phys. Chem. C 2014, 118, 3000–3006. [Google Scholar] [CrossRef]
- Tai, H.; Wang, S.; Jiang, Y. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuators B Chem. 2020, 318, 128104. [Google Scholar] [CrossRef]
- Milena, T.; Šetka, M.; Chmela, O.; Gràcia, I.; Figueras, E.; Cané, C.; Vallejos, S. Cerium oxide-tungsten oxide core-shell nanowire-based microsensors sensitive to acetone. Biosensors 2018, 8, 116. [Google Scholar]
- Hatamie, A.; Angizi, S.; Kumar, S.; Pandey, C.M.; Simchi, A.; Willander, M.; Malhotra, B.D. Textile based chemical and physical sensors for healthcare monitoring. J. Electrochem. Soc. 2020, 167, 037546. [Google Scholar] [CrossRef]
Material | ZnO | Si Doped | W Doped NiO | Mesoporous -25 NFs | CrWO/Ti3C2 | |||
---|---|---|---|---|---|---|---|---|
Semiconductor Type | n-type | n-type | n-type | p-type | p-type | p-type | n-type | p-type |
Lowest Concertation (ppm) | 0.1 | 0.6 | 5 | 1 | 10 | 0.1 | 5 | 0.1 |
Response (Ra/Rg) | 2.9 | 5.6 | 6.7 | 5.1 | 1.34 | 2.3 | 3.1 | 3.44 |
Operating Temperature | 240 | 400 | 260 | 250 | 240 | 300 | 300 | 22 |
Ref | [36] | [12] | [37] | [38] | [39] | [40] | [40] | This Work |
Material | LiWO | NaWO | KWO | |
---|---|---|---|---|
Bandgap Size (eV) | 3.13 | 2.65 | 2.65 | 2.61 |
Sensitivity (%) | 7.95 | 114.41 | 89.35 | 27.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudie, A.; Schornack, A.M.; Wu, Q.; Zhang, Q.; Wang, D. Two-Dimensional Ti3C2 MXene-Based Novel Nanocomposites for Breath Sensors for Early Detection of Diabetes Mellitus. Biosensors 2022, 12, 332. https://doi.org/10.3390/bios12050332
Rudie A, Schornack AM, Wu Q, Zhang Q, Wang D. Two-Dimensional Ti3C2 MXene-Based Novel Nanocomposites for Breath Sensors for Early Detection of Diabetes Mellitus. Biosensors. 2022; 12(5):332. https://doi.org/10.3390/bios12050332
Chicago/Turabian StyleRudie, Anna, Anna Marie Schornack, Qiang Wu, Qifeng Zhang, and Danling Wang. 2022. "Two-Dimensional Ti3C2 MXene-Based Novel Nanocomposites for Breath Sensors for Early Detection of Diabetes Mellitus" Biosensors 12, no. 5: 332. https://doi.org/10.3390/bios12050332
APA StyleRudie, A., Schornack, A. M., Wu, Q., Zhang, Q., & Wang, D. (2022). Two-Dimensional Ti3C2 MXene-Based Novel Nanocomposites for Breath Sensors for Early Detection of Diabetes Mellitus. Biosensors, 12(5), 332. https://doi.org/10.3390/bios12050332