Establishment and Comparative Analysis of Enzyme-Linked Immunoassay and Time-Resolved Fluoroimmunoassay for the Determination of Trace Quinclorac in Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Hapten Synthesis and Artificial Antigen Preparation
2.4. Preparation of MAb and Eu3+-Labeled MAb
2.5. Procedures of ELISA and TRFIA
2.6. Optimization of ELISA and TRFIA
2.7. Cross-Reactivity of ELISA and TRFIA
2.8. Analysis of Spiked Samples
2.9. Real-Sample Detection and UPLC-MS/MS Validation
3. Results and Discussion
3.1. Identification of Antigen and MAb
3.2. Optimal Parameters of ELISA and TRFIA
3.3. Performance of ELISA and TRFIA
3.4. Specificity
3.5. Analysis of Spiked Environmental Samples
3.6. Real-Sample Detection by ELISA, TRFIA and UPLC-MS/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brillas, E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. J. Clean. Prod. 2021, 290, 125841. [Google Scholar] [CrossRef]
- Quareshy, M.; Prusinska, J.; Li, J.; Napier, R. A cheminformatics review of auxins as herbicides. J. Exp. Bot. 2018, 69, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Burgos, N.R.; Tranel, P.J.; Streibig, J.C.; Davis, V.M.; Shaner, D.; Norsworthy, J.K.; Ritz, C. Review: Confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci. 2013, 61, 4–20. [Google Scholar] [CrossRef]
- Delye, C.; Jasieniuk, M.; Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013, 29, 649–658. [Google Scholar] [CrossRef]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef]
- Fipke, M.V.; Vidal, R.A. Integrative theory of the mode of action of quinclorac: Literature review. Planta Daninha 2016, 34, 393–402. [Google Scholar] [CrossRef]
- Gao, Y.; Pan, L.; Sun, Y.; Zhang, T.; Dong, L.; Li, J. Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crus-galli var. zelayensis. Pestic. Biochem. Physiol. 2017, 143, 231–238. [Google Scholar] [CrossRef]
- Sunohara, Y.; Shirai, S.; Yamazaki, H.; Matsumoto, H. Involvement of antioxidant capacity in quinclorac tolerance in Eleusine indica. Environ. Exp. Bot. 2011, 74, 74–81. [Google Scholar] [CrossRef]
- Dornelles, M.F.; Oliveira, G.T. Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Arch. Environ. Con. Tox. 2014, 66, 415–429. [Google Scholar] [CrossRef]
- Pretto, A.; Loro, V.L.; Menezes, C.; Moraes, B.S.; Reimche, G.B.; Zanella, R.; de Avila, L.A. Commercial formulation containing quinclorac and metsulfuron-methyl herbicides inhibit acetylcholinesterase and induce biochemical alterations in tissues of Leporinus obtusidens. Ecotox. Environ. Safe. 2011, 74, 336–341. [Google Scholar] [CrossRef]
- Pareja, L.; Perez-Parada, A.; Agueera, A.; Cesio, V.; Heinzen, H.; Fernandez-Alba, A.R. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: Identification of transformation products and pathways. Chemosphere 2012, 87, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Wan, S.; Shen, C.; Liu, Y. Decay of quinclorac in acidic paddy soil and risk evaluation to the subsequent crop, tobacco (Nicotiana tabacum L.). Bull. Environ. Contam. Toxicol. 2018, 101, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Li, Y.; Xi, G.; Xu, Q.; He, Z.; Liu, Y.; Zhang, J.; Cai, J. Rapid green synthesis of gold nanocatalyst for high-efficiency degradation of quinclorac. J. Hazard. Mater. 2017, 335, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Cheng, H.; Jiang, X.; Sun, H.; Kong, F.; Liang, R.; Qiang, Z.; Liu, H.; Qu, J. Oxidative removal of quinclorac by permanganate through a rate-limiting [3+2] cycloaddition reaction. Environ. Sci.-Proc. Imp. 2018, 20, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, J.; Llorent-Martinez, E.J.; Ruiz-Medina, A. Sensitive fluorometric determination of quinclorac residues in rice. Food Addit. Contam. Part A 2020, 37, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Meulenberg, E.P. Phenolics: Occurrence and immunochemical detection in environment and food. Molecules 2009, 14, 439–473. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Li, H.; Yan, Y.; Su, X. Developments in pesticide analysis by multi-analyte immunoassays: A review. Anal. Methods 2014, 6, 3543–3554. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, K.; Liu, J. Immunochemical detection of emerging organic contaminants in environmental waters. Trac-Trend. Anal. Chem. 2017, 87, 49–57. [Google Scholar] [CrossRef]
- Du, M.; Yang, Q.; Liu, W.; Ding, Y.; Chen, H.; Hua, X.; Wang, M. Development of immunoassays with high sensitivity for detecting imidacloprid in environment and agro-products using phage-borne peptides. Sci. Total Environ. 2020, 723, 137909. [Google Scholar] [CrossRef]
- Le, T.; Yu, H.; Niu, X. Detecting quinoxaline-2-carboxylic acid in animal tissues by using sensitive rapid enzyme-linked immunosorbent assay and time-resolved fluoroimmunoassay. Food Chem. 2015, 175, 85–91. [Google Scholar] [CrossRef]
- Li, Y.F.; Sun, Y.M.; Beier, R.C.; Lei, H.T.; Gee, S.; Hammock, B.D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.D.; et al. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trac-Trend. Anal. Chem. 2017, 88, 25–40. [Google Scholar] [CrossRef]
- Hagan, A.K.; Zuchner, T. Lanthanide-based time-resolved luminescence immunoassays. Anal. Bioanal. Chem. 2011, 400, 2847–2864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knopf, H.P.; Papoian, R. Preparation of europium-streptavidin in a time-resolved fluoroimmunoassay for interleukin-3. J. Immunol. Methods 1991, 138, 233–236. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Xia, X.H.; Xu, Y.; Ke, W.; Yang, W.; Li, Q.G. Application of europium(III) chelates-bonded silica nanoparticle in time-resolved immunofluorometric detection assay for human thyroid stimulating hormone. Anal. Chim. Acta 2012, 722, 95–99. [Google Scholar] [CrossRef]
- Haiyan, S.H.I.; Minghua, W. Effect of hapten space arm length on immune recognition. Chin. J. Pestic. Sci. 2008, 10, 172–177. [Google Scholar]
- Zhu, G.; Mao, L.; Shi, H.; Huang, Y.; Cheng, J. Synthesis and identification of artificial antigen against quinclorac. Sci. Agric. Sinic. 2005, 38, 86–90. [Google Scholar]
- Li, M.; Cui, Y.; Liu, Z.J.; Xue, Y.L.; Zhao, R.J.; Li, Y.; Du, D.L. Sensitive and selective determination of butyl benzyl phthalate from environmental samples using an enzyme immunoassay. Sci. Total Environ. 2019, 687, 849–857. [Google Scholar] [CrossRef]
- Yuan, Y.L.; Hua, X.D.; Li, M.; Yin, W.; Shi, H.Y.; Wang, M.H. Development of a sensitive indirect competitive enzyme-linked immunosorbent assay based on the monoclonal antibody for the detection of benzothiostrobin residue. RSC Adv. 2014, 4, 24406–24411. [Google Scholar] [CrossRef]
- Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Hua, X.; Ding, Y.; Yang, J.; Ma, M.; Shi, H.; Wang, M. Direct competitive fluoroimmunoassays for detection of imidaclothiz in environmental and agricultural samples using quantum dots and europium as labels. Sci. Total Environ. 2017, 583, 222–227. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, Y.; Liu, X.; Qiu, J.; Liu, Z.; Kong, F. Development of a highly sensitive time-resolved fluoroimmunoassay for the determination of trace salbutamol in environmental samples. Sci. Total Environ. 2019, 679, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Darwish, I.A. Immunoassay methods and their applications in pharmaceutical analysis: Basic methodology and recent advances. Int. J. Biomed. Sci. 2006, 2, 217–235. [Google Scholar]
- Li, M.; Zhang, Y.Y.; Xue, Y.L.; Hong, X.; Cui, Y.; Liu, Z.J.; Du, D.L. Simultaneous determination of β2-agonists clenbuterol and salbutamol in water and swine feed samples by dual-labeled time-resolved fluoroimmunoassay. Food Control 2017, 73, 1039–1044. [Google Scholar] [CrossRef]
Compound | Structure | ELISA | TRFIA | ||
---|---|---|---|---|---|
IC50 (mg/L) | CR (%) | IC50 (mg/L) | CR (%) | ||
Quinclorac | 0.169 | 100 | 0.087 | 100 | |
7-chloro-8-methylquinoline | 9.8 | 1.7 | 4.9 | 1.8 | |
2-quinoline carboxylic acid | >50 | <0.5 | >50 | <0.5 | |
Quinmerac | 10.7 | 1.6 | 6.8 | 1.3 |
Sample | ELISA | TRFIA | ||||
---|---|---|---|---|---|---|
Concentration (mg/L or mg/kg) | Mean Recovery ± SD (%) | RSD (%) | Concentration (mg/L or mg/kg) | Mean Recovery ± SD (%) | RSD (%) | |
River water | 1 | 88.7 ± 6.7 | 7.6 | 1 | 93.0 ± 9.2 | 9.9 |
0.5 | 98.9 ± 5.6 | 5.7 | 0.2 | 103.3 ± 10.5 | 10.2 | |
0.2 | 88.0 ± 10.0 | 11.3 | 0.05 | 94.3 ± 8.5 | 9.0 | |
Paddy water | 1 | 101.4 ± 7.0 | 6.9 | 1 | 100.6 ± 12.2 | 12.1 |
0.5 | 92.1 ± 6.0 | 6.5 | 0.2 | 106.1 ± 5.5 | 5.1 | |
0.2 | 87.6 ± 1.5 | 1.7 | 0.05 | 98.0 ± 1.8 | 1.8 | |
Paddy soil | 1 | 79.0 ± 3.9 | 5.0 | 1 | 86.0 ± 5.8 | 6.7 |
0.5 | 83.2 ± 3.4 | 4.1 | 0.2 | 83.4 ± 10.4 | 12.5 | |
0.2 | 79.9 ± 9.2 | 11.5 | 0.05 | 77.3 ± 5.1 | 6.7 | |
Brown rice | 1 | 83.6 ± 6.2 | 7.5 | 1 | 82.7 ± 5.4 | 6.5 |
0.5 | 87.5 ± 9.7 | 11.1 | 0.2 | 81.4 ± 7.4 | 9.1 | |
0.2 | 77.7 ± 6.2 | 8.0 | 0.05 | 79.0 ± 3.3 | 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, X.; Zhu, X.; Lin, Q.; Pan, X.; Tan, X.; Guo, Y.; Qiu, J.; Fang, S. Establishment and Comparative Analysis of Enzyme-Linked Immunoassay and Time-Resolved Fluoroimmunoassay for the Determination of Trace Quinclorac in Environment. Biosensors 2022, 12, 338. https://doi.org/10.3390/bios12050338
Liu X, Chen X, Zhu X, Lin Q, Pan X, Tan X, Guo Y, Qiu J, Fang S. Establishment and Comparative Analysis of Enzyme-Linked Immunoassay and Time-Resolved Fluoroimmunoassay for the Determination of Trace Quinclorac in Environment. Biosensors. 2022; 12(5):338. https://doi.org/10.3390/bios12050338
Chicago/Turabian StyleLiu, Xue, Xiuzhai Chen, Xu Zhu, Qing Lin, Xi Pan, Xiaolei Tan, Yongfeng Guo, Jun Qiu, and Song Fang. 2022. "Establishment and Comparative Analysis of Enzyme-Linked Immunoassay and Time-Resolved Fluoroimmunoassay for the Determination of Trace Quinclorac in Environment" Biosensors 12, no. 5: 338. https://doi.org/10.3390/bios12050338
APA StyleLiu, X., Chen, X., Zhu, X., Lin, Q., Pan, X., Tan, X., Guo, Y., Qiu, J., & Fang, S. (2022). Establishment and Comparative Analysis of Enzyme-Linked Immunoassay and Time-Resolved Fluoroimmunoassay for the Determination of Trace Quinclorac in Environment. Biosensors, 12(5), 338. https://doi.org/10.3390/bios12050338