Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Fiber Calibration
2.3. Gold Nanoparticle Preparation
2.4. RF Ablation Experiments
3. Experimental Results
3.1. Thermal Maps
3.2. Maximum Temperature
3.3. Evaluation of Thermal Damage Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Zhang, J.; Liu, X.; Li, X.; Jiao, B.; Kang, T. Clinical outcomes of radiofrequency ablation and surgical resection for small hepatocellular carcinoma: A meta-analysis. J. Gastroenterol. Hepatol. 2012, 27, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Rhim, H.; Noh, S. Radiofrequency Ablation versus Surgical Resection as Primary Treatment of Hepatocellular Carcinoma Meeting the Milan Criteria: A Systematic Review. J. Gastroenterol. Hepatol. 2011, 26, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- HirokiNishikawa, H.; Inuzuka, T.; Takeda, H.; Nakajima, J.; Matsuda, F.; Sakamoto, A.; Henmi, S.; Hatamaru, K.; Ishikawa, T.; Saito, S.; et al. Comparison of percutaneous radiofrequency thermal ablation and surgical resection for small hepatocellular carcinoma. BMC Gastroenterol. 2011, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Solmi, L.; Nigro, G.; Roda, E. Therapeutic effectiveness of echo-guided percutaneous radiofrequency ablation therapy with a LeVeen needle electrode in hepatocellular carcinoma. World J. Gastroenterol. 2006, 12, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Schena, E.; Tosi, D.; Saccomandi, P.; Lewis, E.; Kim, T. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview. Sensors 2016, 16, 1144. [Google Scholar] [CrossRef]
- Clasen, S.; Pereira, P.L. Magnetic resonance guidance for radiofrequency ablation of liver tumors. J. Magn. Reson. Imaging 2008, 27, 421–433. [Google Scholar] [CrossRef]
- Buscarini, L.; Buscarini, E.; Di Stasi, M.; Vallisa, D.; Quaretti, P.; Rocca, A. Percutaneous radiofrequency ablation of small hepatocellular carcinoma: Long-term results. Eur. Radiol. 2001, 11, 914–921. [Google Scholar] [CrossRef]
- MacDonell, J.; Patel, N.; Rubino, S.; Ghoshal, G.; Fischer, G.; Burdette, E.C.; Hwang, R.; Pilitsis, J.G. Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation. Neurosurg. Focus 2018, 44, E11. [Google Scholar] [CrossRef] [Green Version]
- Ashikbayeva, Z.; Aitkulov, A.; Jelbuldina, M.; Issatayeva, A.; Beisenova, A.; Molardi, C.; Saccomandi, P.; Blanc, W.; Inglezakis, V.; Tosi, D. Distributed 2D temperature sensing during nanoparticles assisted laser ablation by means of high-scattering fiber sensors. Sci. Rep. 2020, 10, 12593. [Google Scholar] [CrossRef]
- Sapareto, S.A.; Dewey, W.C. Original Contribution Thermal Dose Determination in Cancer Therapy. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 787–800. [Google Scholar] [CrossRef]
- Sapareto, S.A. Thermal isoeffect dose: Addressing the problem of thermotolerance. Int. J. Hyperth. 1987, 3, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Tosi, D.; Macchi, E.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Leen, G.; Lewis, E. Monitoring of radiofrequency thermal ablation in liver tissue through fibre Bragg grating sensors array. Electron. Lett. 2014, 50, 981–983. [Google Scholar] [CrossRef]
- Varadarajulu, S.; Jhala, N.C.; Drelichman, E.R. EUS-guided radiofrequency ablation with a prototype electrode array system in an animal model (with video). Gastrointest. Endosc. 2009, 70, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Ter Haar, G. HIFU Tissue Ablation: Concept and Devices. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2016; Volume 880, pp. 3–20. [Google Scholar] [CrossRef]
- Jelbuldina, M.; Korobeinyk, A.; Korganbayev, S.; Tosi, D.; Dukenbayev, K.; Inglezakis, V.J. Real-Time Temperature Monitoring in Liver During Magnetite Nanoparticle-Enhanced Microwave Ablation with Fiber Bragg Grating Sensors: Ex Vivo Analysis. IEEE Sens. J. 2018, 18, 8005–8011. [Google Scholar] [CrossRef]
- Gassino, R.; Liu, Y.; Konstantaki, M.; Vallan, A.; Pissadakis, S.; Perrone, G. A Fiber Optic Probe for Tumor Laser Ablation with Integrated Temperature Measurement Capability. J. Light. Technol. 2017, 35, 3447–3454. [Google Scholar] [CrossRef] [Green Version]
- Nault, J.-C.; Sutter, O.; Nahon, P.; Ganne-Carrié, N.; Seror, O. Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations. J. Hepatol. 2018, 68, 783–797. [Google Scholar] [CrossRef] [Green Version]
- Mayer, T.; Cazzato, R.; De Marini, P.; Auloge, P.; Dalili, D.; Koch, G.; Garnon, J.; Gangi, A. Spinal metastases treated with bipolar radiofrequency ablation with increased (>70 °C) target temperature: Pain management and local tumor control. Diagn. Interv. Imaging 2021, 102, 27–34. [Google Scholar] [CrossRef]
- Wood, B.; Locklin, J.K.; Viswanathan, A.; Kruecker, J.; Haemmerich, D.; Cebral, J.; Sofer, A.; Cheng, R.; McCreedy, E.; Cleary, K.; et al. Technologies for Guidance of Radiofrequency Ablation in the Multimodality Interventional Suite of the Future. J. Vasc. Interv. Radiol. 2007, 18, 9–24. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.; Georgiades, C. Radiofrequency Ablation: Mechanism of Action and Devices. J. Vasc. Interv. Radiol. 2010, 21 (Suppl. S8), S179–S186. [Google Scholar] [CrossRef]
- Wielandts, J.-Y.; Almorad, A.; Hilfiker, G.; Gillis, K.; El Haddad, M.; Vijgen, J.; Berte, B.; Waroux, J.-B.L.P.D.; Tavernier, R.; Duytschaever, M.; et al. Biosense Webster’s QDOT Micro™ radiofrequency ablation catheter. Futur. Cardiol. 2021, 17, 817–825. [Google Scholar] [CrossRef]
- Red, F.; Orady, M. Drug Therapy R Adio-F Requency a Blation as T Reatment for C Ardiac A Rrhythmias. N. Engl. J. Med. 1999, 340, 534–544. [Google Scholar]
- Bhandari, A.; Ellias, M. Loin pain hematuria syndrome: Pain control with RFA to the splanchanic plexus. Pain Clin. 2000, 12, 323–327. [Google Scholar] [CrossRef]
- Orgera, G.; Krokidis, M.; Matteoli, M.; Varano, G.M.; La Verde, G.; David, V.; Rossi, M. Percutaneous Vertebroplasty for Pain Management in Patients with Multiple Myeloma: Is Radiofrequency Ablation Necessary? Cardiovasc. Interv. Radiol. 2014, 37, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Thiagalingam, A.; D’Avila, A.; McPherson, C.; Malchano, Z.; Ruskin, J.; Reddy, V. Impedance and Temperature Monitoring Improve the Safety of Closed-Loop Irrigated-Tip Radiofrequency Ablation. J. Cardiovasc. Electrophysiol. 2007, 18, 318–325. [Google Scholar] [CrossRef]
- Ashikbayeva, Z.; Aitkulov, A.; Wolf, A.; Dostovalov, A.; Amantayeva, A.; Kurbanova, A.; Inglezakis, V.; Tosi, D. Investigation of Thermal Effects of Radiofrequency Ablation Mediated with Iron Oxide Nanoparticles Dispersed in Agarose and Chitosan Solvents. Appl. Sci. 2021, 11, 2437. [Google Scholar] [CrossRef]
- Ashikbayeva, Z.; Tosi, D.; Balmassov, D.; Schena, E.; Saccomandi, P.; Inglezakis, V. Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. Nanomaterials 2019, 9, 1195. [Google Scholar] [CrossRef] [Green Version]
- Tosi, D.; Schena, E.; Molardi, C.; Korganbayev, S. Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Opt. Fiber Technol. 2018, 43, 6–19. [Google Scholar] [CrossRef]
- Loyez, M.; Larrieu, J.-C.; Chevineau, S.; Remmelink, M.; Leduc, D.; Bondue, B.; Lambert, P.; Devière, J.; Wattiez, R.; Caucheteur, C. In situ cancer diagnosis through online plasmonics. Biosens. Bioelectron. 2019, 131, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Korganbayev, S.; Orazayev, Y.; Sovetov, S.; Bazyl, A.; Schena, E.; Massaroni, C.; Gassino, R.; Vallan, A.; Perrone, G.; Saccomandi, P.; et al. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario. Opt. Fiber Technol. 2018, 41, 48–55. [Google Scholar] [CrossRef]
- Evers, D.; Nachabé, R.; Hompes, D.; van Coevorden, F.; Lucassen, G.; Hendriks, B.; van Velthuysen, M.-L.; Wesseling, J.; Ruers, T. Optical sensing for tumor detection in the liver. Eur. J. Surg. Oncol. (EJSO) 2013, 39, 68–75. [Google Scholar] [CrossRef]
- Tosi, D.; Macchi, E.G.; Braschi, G.; Cigada, A.; Gallati, M.; Rossi, S.; Poeggel, S.; Leen, G.; Lewis, E. Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: Ex vivo experiments. Appl. Opt. 2014, 53, 2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosi, D.; Macchi, E.G.; Gallati, M.; Braschi, G.; Cigada, A.; Rossi, S.; Leen, G.; Lewis, E. Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver. Biomed. Opt. Express 2014, 5, 1799. [Google Scholar] [CrossRef] [PubMed]
- Beisenova, A.; Issatayeva, A.; Sovetov, S.; Korganbayev, S.; Jelbuldina, M.; Ashikbayeva, Z.; Blanc, W.; Schena, E.; Sales, S.; Molardi, C.; et al. Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers. Biomed. Opt. Express 2019, 10, 1282. [Google Scholar] [CrossRef] [PubMed]
- Beccaria, A.; Bellone, A.; Mirigaldi, A.; Serafini, V.; Olivero, M.; Vallan, A.; Perrone, G. Temperature monitoring of tumor hyperthermal treatments with optical fibers: Comparison of distributed and quasi-distributed techniques. Opt. Fiber Technol. 2020, 60, 102340. [Google Scholar] [CrossRef]
- Korganbayev, S.; Orrico, A.; Bianchi, L.; De Landro, M.; Wolf, A.; Dostovalov, A.; Saccomandi, P. Closed-Loop Temperature Control Based on Fiber Bragg Grating Sensors for Laser Ablation of Hepatic Tissue. Sensors 2020, 20, 6496. [Google Scholar] [CrossRef]
- Morra, F.; De Landro, M.; Korganbayev, S.; Wolf, A.; Dostovalov, A.; Cigada, A.; Saccomandi, P. Spatially resolved thermometry during laser ablation in tissues: Distributed and quasi-distributed fiber optic-based sensing. Opt. Fiber Technol. 2020, 58, 102295. [Google Scholar] [CrossRef]
- Esposito, F.; Srivastava, A.; Iadicicco, A.; Campopiano, S. Multi-parameter sensor based on single Long Period Grating in Panda fiber for the simultaneous measurement of SRI, temperature and strain. Opt. Laser Technol. 2019, 113, 198–203. [Google Scholar] [CrossRef]
- Esposito, F.; Srivastava, A.; Sansone, L.; Giordano, M.; Campopiano, S.; Iadicicco, A. Label-Free Biosensors Based on Long Period Fiber Gratings: A Review. IEEE Sens. J. 2020, 21, 12692–12705. [Google Scholar] [CrossRef]
- Ashikbayeva, Z.; Aitkulov, A.; Atabaev, T.S.; Blanc, W.; Inglezakis, V.J.; Tosi, D. Green-Synthesized Silver Nanoparticle–Assisted Radiofrequency Ablation for Improved Thermal Treatment Distribution. Nanomaterials 2022, 12, 426. [Google Scholar] [CrossRef]
- Gannon, C.J.; Patra, C.R.; Bhattacharya, R.; Mukherjee, P.; Curley, S.A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 2008, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Mooney, R.; Schena, E.; Saccomandi, P.; Zhumkhawala, A.; Aboody, K.; Berlin, J.M. Gold nanorod-mediated near-infrared laser ablation: In vivo experiments on mice and theoretical analysis at different settings. Int. J. Hyperth. 2017, 33, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tshikhudo, T.; Wang, Z.; Brust, M. Biocompatible gold nanoparticles. Mater. Sci. Technol. 2004, 20, 980–984. [Google Scholar] [CrossRef]
- Kruse, D.E.; Stephens, D.N.; Lindfors, H.A.; Ingham, E.S.; Paoli, E.E.; Ferrara, K.W. A Radio-Frequency Coupling Network for Heating of Citrate-Coated Gold Nanoparticles for Cancer Therapy: Design and Analysis. IEEE Trans. Biomed. Eng. 2011, 58, 2002–2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letfullin, R.R.; Iversen, C.B.; George, T.F. Modeling nanophotothermal therapy: Kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 137–145. [Google Scholar] [CrossRef]
- Pedro, R.N.; Thekke-Adiyat, T.; Goel, R.; Shenoi, M.; Slaton, J.; Schmechel, S.; Bischof, J.; Anderson, J.K. Use of Tumor Necrosis Factor–alpha-coated Gold Nanoparticles to Enhance Radiofrequency Ablation in a Translational Model of Renal Tumors. Urology 2010, 76, 494–498. [Google Scholar] [CrossRef]
- Lacroce, E.; Saccomandi, P.; Rossi, F. Can gold nanoparticles improve delivery performance of polymeric drug-delivery systems? Ther. Deliv. 2021, 12, 489–492. [Google Scholar] [CrossRef]
- Cardinal, J.; Klune, J.R.; Chory, E.; Jeyabalan, G.; Kanzius, J.S.; Nalesnik, M.; Geller, D.A. Non-Invasive Radiofrequency Ablation of Cancer Targe. Surgery 2008, 144, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Molardi, C.; Korganbayev, S.; Blanc, W.; Tosi, D. Characterization of a nanoparticles-doped optical fiber by the use of optical backscatter reflectometry. In Proceedings of the Advanced Sensor Systems and Applications VIII, Beijing, China, 11–13 October 2018; Volume 10821, p. 76. [Google Scholar] [CrossRef]
- Molardi, C.; Blanc, W.; Tosi, D. (INVITED) Fiber loop resonator sensor achieved by high-scattering MgO nanoparticle-doped fibers. Opt. Mater. X 2020, 7, 100057. [Google Scholar] [CrossRef]
- Turkevich, J. Colloidal Gold: Part II Colour, Coagulation, Adhesion, Alloying and Catalytic Properties. Gold Bull. 1985, 18, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-W. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Med. Phys. 2013, 40, 073303. [Google Scholar] [CrossRef]
- Rhim, H.; Goldberg, S.N.; Dodd, G.D.; Solbiati, L.; Lim, H.K.; Tonolini, M.; Cho, O.K. Essential Techniques for Successful Radio-frequency Thermal Ablation of Malignant Hepatic Tumors. RadioGraphics 2001, 21, S17–S35. [Google Scholar] [CrossRef] [PubMed]
- Macchi, E.G.; Tosi, D.; Braschi, G.; Gallati, M.; Cigada, A.; Busca, G.; Lewis, E. Optical fiber sensors-based temperature distribution measurement inex vivoradiofrequency ablation with submillimeter resolution. J. Biomed. Opt. 2014, 19, 117004. [Google Scholar] [CrossRef] [PubMed]
- Froggatt, M.; Moore, J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl. Opt. 1998, 37, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Issatayeva, A.; Amantayeva, A.; Blanc, W.; Molardi, C.; Tosi, D. Temperature compensation of the fiber-optic based system for the shape reconstruction of a minimally invasive surgical needle. Sens. Actuators A Phys. 2021, 329, 112795. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent Progress in Distributed Fiber Optic Sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [Green Version]
- Saccomandi, P.; Schena, E.; Silvestri, S. Techniques for temperature monitoring during laser-induced thermotherapy: An overview. Int. J. Hyperth. 2013, 29, 609–619. [Google Scholar] [CrossRef]
- Zhang, Z.; Grattan, K.T.V.; Palmer, A.W. Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite. Rev. Sci. Instrum. 1992, 63, 3869–3873. [Google Scholar] [CrossRef]
- Solbiati, L.; Livraghi, T.; Goldberg, S.N.; Ierace, T.; Meloni, F.; Dellanoce, M.; Cova, L.; Halpern, E.F.; Gazelle, G.S. Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients. Radiology 2001, 221, 159–166. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sametova, A.; Kurmashev, S.; Ashikbayeva, Z.; Amantayeva, A.; Blanc, W.; Atabaev, T.S.; Tosi, D. Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation. Biosensors 2022, 12, 352. https://doi.org/10.3390/bios12050352
Sametova A, Kurmashev S, Ashikbayeva Z, Amantayeva A, Blanc W, Atabaev TS, Tosi D. Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation. Biosensors. 2022; 12(5):352. https://doi.org/10.3390/bios12050352
Chicago/Turabian StyleSametova, Akbota, Sabit Kurmashev, Zhannat Ashikbayeva, Aida Amantayeva, Wilfried Blanc, Timur Sh. Atabaev, and Daniele Tosi. 2022. "Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation" Biosensors 12, no. 5: 352. https://doi.org/10.3390/bios12050352
APA StyleSametova, A., Kurmashev, S., Ashikbayeva, Z., Amantayeva, A., Blanc, W., Atabaev, T. S., & Tosi, D. (2022). Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation. Biosensors, 12(5), 352. https://doi.org/10.3390/bios12050352