Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Derivation of Self-Compensated Particle Diameter
2.1.1. Particle Tracking for Trajectory
2.1.2. Time-Dependent Blinking Signal
2.2. Experimental Setup
2.3. Preparations of Functionalized Janus Particles
2.3.1. Fabrication of Janus Particles
2.3.2. Sandwiched Immunocomplexed Janus Particles
2.4. Generation of Simulated Images
3. Results and Discussion
3.1. Determination of Particle Diameter out of Rotational Diffusivity and Translational Diffusivity
3.2. Evaluations of Simulated Bead-Based Brownian Motion with Viscosity and Temperature Changes
3.3. Evaluations of Experimental Viscosity and Temperature Changes
3.4. Realization of Highly Stable and Sensitive Immunosensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Teixeira, J.; Bellissent-Funel, M.-C.; Chen, S.H.; Dianoux, A.J. Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys. Rev. A 1985, 31, 1913–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agmon, N. Tetrahedral Displacement: The Molecular Mechanism behind the Debye Relaxation in Water. J. Phys. Chem. 1996, 100, 1072–1080. [Google Scholar] [CrossRef]
- Lavalette, D.; Tétreau, C.; Tourbez, M.; Blouquit, Y. Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment. Biophys. J. 1999, 76, 2744–2751. [Google Scholar] [CrossRef] [Green Version]
- Mayor, P.; D’Anna, G.; Barrat, A.; Loreto, V. Observing Brownian motion and measuring temperatures in vibration-fluidized granular matter. New J. Phys. 2005, 7, 28. [Google Scholar] [CrossRef]
- Laage, D.; Hynes, J.T. A Molecular Jump Mechanism of Water Reorientation. Science 2006, 311, 832. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, D.E.; Fenn, E.E.; Lin, Y.-S.; Skinner, J.L.; Bagchi, B.; Fayer, M.D. Water inertial reorientation: Hydrogen bond strength and the angular potential. Proc. Natl. Acad. Sci. USA 2008, 105, 5295. [Google Scholar] [CrossRef] [Green Version]
- Clayton, K.N.; Berglund, G.D.; Linnes, J.C.; Kinzer-Ursem, T.L.; Wereley, S.T. DNA Microviscosity Characterization with Particle Diffusometry for Downstream DNA Detection Applications. Anal. Chem. 2017, 89, 13334–13341. [Google Scholar] [CrossRef]
- Chuang, H.S.; Chen, Y.J.; Cheng, H.P. Enhanced diffusometric immunosensing with grafted gold nanoparticles for detection of diabetic retinopathy biomarker tumor necrosis factor-alpha. Biosens. Bioelectron. 2018, 101, 75–83. [Google Scholar] [CrossRef]
- Wang, J.C.; Chi, S.W.; Yang, T.H.; Chuang, H.S. Label-Free Monitoring of Microorganisms and Their Responses to Antibiotics Based on Self-Powered Microbead Sensors. ACS Sens. 2018, 3, 2182–2190. [Google Scholar] [CrossRef]
- Cheng, H.P.; Chuang, H.S. Rapid and Sensitive Nano-Immunosensors for Botulinum. ACS Sens. 2019, 4, 1754–1760. [Google Scholar] [CrossRef]
- Wang, J.C.; Chi, S.W.; Shieh, D.B.; Chuang, H.S. Development of a self-driving bioassay based on diffusion for simple detection of microorganisms. Sens. Actuators B-Chem. 2019, 278, 140–146. [Google Scholar] [CrossRef]
- Gabbasov, R.; Yurenya, A.; Nikitin, A.; Cherepanov, V.; Polikarpov, M.; Chuev, M.; Majouga, A.; Panchenko, V. Study of Brownian motion of magnetic nanoparticles in viscous media by Mossbauer spectroscopy. J. Magn. Magn. Mater. 2019, 475, 146–151. [Google Scholar] [CrossRef]
- Wang, J.C.; Tung, Y.C.; Ichiki, K.; Sakamoto, H.; Yang, T.H.; Suye, S.; Chuang, H.S. Culture-free detection of methicillin-resistant Staphylococcus aureus by using self-driving diffusometric DNA nanosensors. Biosens. Bioelectron. 2020, 148, 111817. [Google Scholar] [CrossRef] [PubMed]
- Debye, P. Polar molecules. By P. Debye, Ph.D., Pp. 172. New York: Chemical Catalog Co., Inc., 1929. $ 3.50. J. Soc. Chem. Ind. 1929, 48, 1036–1037. [Google Scholar] [CrossRef]
- Chen, W.-L.; Chuang, H.-S. Trace Biomolecule Detection with Functionalized Janus Particles by Rotational Diffusion. Anal. Chem. 2020, 92, 12996–13003. [Google Scholar] [CrossRef]
- Furry, W.H. Isotropic Rotational Brownian Motion. Phys. Rev. 1957, 107, 7–13. [Google Scholar] [CrossRef]
- Li, G.; Tang, J.X. Accumulation of Microswimmers near a Surface Mediated by Collision and Rotational Brownian Motion. Phys. Rev. Lett. 2009, 103, 078101. [Google Scholar] [CrossRef]
- Wang, P.Y.; Mason, T.G. Dimer crystallization of chiral proteoids. Phys. Chem. Chem. Phys. 2017, 19, 7167–7175. [Google Scholar] [CrossRef]
- Hunter, G.L.; Edmond, K.V.; Elsesser, M.T.; Weeks, E.R. Tracking rotational diffusion of colloidal clusters. Opt. Express 2011, 19, 17189–17202. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, M.; Shikano, Y.; Tsukahara, R.; Shikata, S.; Hashimoto, H. Observation of the linewidth broadening of single spins in diamond nanoparticles in aqueous fluid and its relation to the rotational Brownian motion. Sci. Rep. 2018, 8, 14773. [Google Scholar] [CrossRef]
- Wittmeier, A.; Holterhoff, A.L.; Johnson, J.; Gibbs, J.G. Rotational Analysis of Spherical, Optically Anisotropic Janus Particles by Dynamic Microscopy. Langmuir 2015, 31, 10402–10410. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chen, W.L.; Phong, P.H.; Chuang, H.S. Investigation of Micro-Volume Viscosity with Janus Microbeads Based on Rotational Brownian Motion. Sensors 2019, 19, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, T.; Kim, K. Spurious violation of the Stokes–Einstein–Debye relation in supercooled water. Sci. Rep. 2019, 9, 8118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Barnhart, B.L. The Hilbert-Huang Transform: Theory, Applications, Development. Ph.D. Thesis, The University of Iowa, Iowa City, IA, USA, 2011; 89p. [Google Scholar]
- Wang, G.; Chen, X.-Y.; Qiao, F.-L.; Wu, Z.; Huang, N.E. On Intrinsic Mode Function. Adv. Adapt. Data Anal. 2010, 2, 277–293. [Google Scholar] [CrossRef]
- Sheely, M.L. Glycerol Viscosity Tables. Ind. Eng. Chem. 1932, 24, 1060–1064. [Google Scholar] [CrossRef]
- Takei, H.; Shimizu, N. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres. Langmuir 1997, 13, 1865–1868. [Google Scholar] [CrossRef]
- Love, J.C.; Gates, B.D.; Wolfe, D.B.; Paul, K.E.; Whitesides, G.M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2002, 2, 891–894. [Google Scholar] [CrossRef]
- Olsen, M.G.; Adrian, R.J. Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids 2000, 29, S166–S174. [Google Scholar] [CrossRef]
- Ishida, T.; Maekawa, K.; Kishi, T. Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history. Cem. Concr. Res. 2007, 37, 565–578. [Google Scholar] [CrossRef]
- Squires, G.L. Practical Physics, 4th ed.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef]
- Davidson, G.A. A Modified Power Law Representation of the Pasquill-Gifford Dispersion Coefficients. J. Air Waste Manag. Assoc. 1990, 40, 1146–1147. [Google Scholar] [CrossRef] [Green Version]
- Woodard, R. Interpolation of Spatial Data: Some Theory for Kriging. Technometrics 2000, 42, 436–437. [Google Scholar] [CrossRef]
- Lu, G.; Jiang, Z.; Ye, L.; Huang, Y. Pulse Feature Extraction Based on Improved Gaussian Model. In Proceedings of the 2014 International Conference on Medical Biometrics, Shenzhen, China, 30 May–1 June 2014; pp. 90–94. [Google Scholar] [CrossRef]
- Volpe, G.; Gigan, S.; Volpe, G. Simulation of the active Brownian motion of a microswimmer. Am. J. Phys. 2014, 82, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Iati, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys.-Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Huang, X.H.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. [Google Scholar] [CrossRef]
- Young, A.D. Boundary Layers; American Institute of Aeronautics and Astronautics: Washington, DC, USA, 1989. [Google Scholar]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-γ: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef]
- Buck, J.R.; Daniel, M.M.; Singer, A.C. Computer Explorations in Signals and Systems Using MATLAB; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
Pixel Size | 3.45 µm | Magnification | 40× | Temperature | 25 °C |
Frame Rate | 50 Hz | NA † | 0.6 | Viscosity | 1 mPa·s |
Ex * | 630 nm | Elapsed Time | 10 s | dp ‡ | 1 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-L.; Chuang, H.-S. Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry. Biosensors 2022, 12, 362. https://doi.org/10.3390/bios12060362
Chen W-L, Chuang H-S. Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry. Biosensors. 2022; 12(6):362. https://doi.org/10.3390/bios12060362
Chicago/Turabian StyleChen, Wei-Long, and Han-Sheng Chuang. 2022. "Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry" Biosensors 12, no. 6: 362. https://doi.org/10.3390/bios12060362
APA StyleChen, W. -L., & Chuang, H. -S. (2022). Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry. Biosensors, 12(6), 362. https://doi.org/10.3390/bios12060362