Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@Ag Core–Shell Nanotags for Bisphenol A Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments and Equipment
2.3. Preparation of Magnetic HNTs@AuNPs Composites
2.3.1. Preparation of MNTs
2.3.2. Preparation of MNTs@AuNPs
2.4. Preparation of AuNPs@4-MBA@AgCS
2.5. Preparation of the SERS Aptamer Sensor for BPA Detection
2.5.1. Functionalization of Au@4-MBA@AgCS with Aptamer
2.5.2. Functionalization of MNTs@AuNPs with Complementary DNA Strand
2.5.3. Preparation of the SERS Aptasensors
2.6. Specificity and Applicability Evaluation
3. Results and Discussion
3.1. Detection Principle
3.2. Structural Characterization of MNTs@AuNPs Composites
3.3. Characterization of Au@4-MBA@AgCS Composites
3.4. Characterization of Signal Unit and Capture Unit
3.5. Optimization of Detection Conditions
3.6. BPA Detection
3.7. Specificity Evaluation and Real Samples Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonavane, M.N.; Gassman, N.R. Bisphenol A co-exposure effects: A key factor in understanding BPA’s complex mechanism and health outcomes. Crit. Rev. Toxicol. 2019, 49, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Beausoleil, C.; Emond, C.; Cravedi, J.P.; Antignac, J.P.; Applanat, M.; Appenzeller, B.; Beaudouin, R.; Belzunces, L.P.; Canivenc-Lavier, M.C.; Chevalier, N. Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Mol. Cell. Endocrinol. 2018, 475, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R. Neuro-toxic and Reproductive Effects of BPA. Curr. Neuropharmacol. 2019, 17, 1109–1132. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Kang, J.H. Bisphenol A (BPA) and cell signaling pathways. Biotechnol. Adv. 2017, 36, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Le, H.H.; Carlson, E.M.; Chua, J.P.; Belcher, S.M. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol. Lett. 2008, 176, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.S.; Pang, W.; Ryu, D.Y.; Park, Y.J.; Pang, M. Multigenerational and transgenerational impact of paternal bisphenol A exposure on male fertility in a mouse model. Hum. Reprod. 2020, 35, 1740–1752. [Google Scholar] [CrossRef]
- Neruja, L.; Mcilwraith, E.K.; Belsham, D.D. BPA Differentially Regulates NPY Expression in Hypothalamic Neurons through a Mechanism Involving Oxidative Stress. Endocrinology 2020, 161, 1–21. [Google Scholar]
- Wang, Q.; Bai, J.; Ning, B.; Fan, L.; Gao, Z. Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells. Chemosphere 2020, 254, 126788. [Google Scholar] [CrossRef]
- Deceuninck, Y.; Bichon, E.; Gény, T.; Veyrand, B.; Grandin, F.C.; Viguié, C.; Marchand, P.; le Bizec, B. Quantitative method for conjugated metabolites of bisphenol A and bisphenol S determination in food of animal origin by Ultra High Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2019, 1601, 232–242. [Google Scholar] [CrossRef]
- Deviot, M.; Lachaise, I.; Hoegg, C.; Durner, J.; Reichl, F.X.; Attal, J.P.; Dursun, E. Bisphenol A release from an orthodontic resin composite: A GC/MS and LC/MS study. Dent. Mater. 2018, 34, 341–354. [Google Scholar] [CrossRef]
- Du, Z.-D.; Cui, Y.-Y.; Yang, C.-X.; Yan, X.-P. Synthesis of magnetic amino-functionalized microporous organic network composites for magnetic solid phase extraction of endocrine disrupting chemicals from water, beverage bottle and juice samples. Talanta 2020, 206, 120179. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Chen, S.; Shi, T.; Li, C.; Zhang, H. Competitive plasmonic biomimetic enzyme-linked immunosorbent assay for sensitive detection of bisphenol A. Food Chem. 2020, 344, 128602. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Wu, H.; Chen, L.; Yang, L. Dual enzyme-free amplification strategy for ultra-sensitive fluorescent detection of bisphenol A in water. Anal. Chim. Acta 2018, 1020, 104–109. [Google Scholar] [CrossRef]
- Jia, M.; Sha, J.; Li, Z.; Wang, W.; Zhang, H. High affinity truncated aptamers for ultra-sensitive colorimetric detection of bisphenol A with label-free aptasensor. Food Chem. 2020, 317, 126459. [Google Scholar] [CrossRef] [PubMed]
- Kashefi-Kheyrabadi, L.; Kim, J.; Gwak, H.; Hyun, K.; Bae, N.; Lee, S.; Jung, H. A microfluidic electrochemical aptasensor for enrichment and detection of bisphenol A. Biosens. Bioelectron. 2018, 117, 457–463. [Google Scholar] [CrossRef]
- Li, Z.; Hu, J.; Xiao, Y.; Zha, Q.; Zhu, M. Surfactant assisted Cr-metal organic framework for the detection of bisphenol A in dust from E-waste recycling area. Anal. Chim. Acta 2020, 1146, 174–183. [Google Scholar] [CrossRef]
- Wang, X.; Park, S.; Ko, J.; Xiao, X.; Giannini, V.; Maier, S.A.; Kim, D.; Choo, J. Sensitive and Reproducible Immunoassay of Multiple Mycotoxins Using Surface-Enhanced Raman Scattering Mapping on 3D Plasmonic Nanopillar Arrays. Small 2018, 14, 1801623. [Google Scholar] [CrossRef]
- Schatz, G.C. Theoretical studies of surface enhanced Raman scattering. Acc. Chem. Res 1984, 17, 370–376. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. [Google Scholar] [CrossRef]
- Kelly, K.L.; Oronado, E.C.; Lin, L.Z.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. Cheminform 2003, 34, 668–677. [Google Scholar] [CrossRef]
- Kleinman, S.L.; Frontiera, R.R.; Henry, A.I.; Dieringer, J.A.; Duyne, R. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2012, 15, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Pudasaini, P.R.; Ruiz-Zepeda, F.; Vinogradova, E.; Ayon, A.A. Plasmonic Effects of Au/Ag Bimetallic Multispiked Nanoparticles for Photovoltaic Applications. Acs Appl. Mater. Interfaces 2014, 6, 15472–15479. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 2014, 39, 1498–1525. [Google Scholar] [CrossRef]
- Xu, L.; Kuang, H.; Xu, C.; Ma, W.; Wang, L.; Kotov, N.A. Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J. Am. Chem. Soc. 2012, 134, 1699–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaro, M.; Riela, S.; Meo, P.L.; Noto, R.; Cavallaro, G.; Milioto, S.; Lazzara, G. Functionalized halloysite multivalent glycocluster as a new drug delivery system. J. Mater. Chem. B 2014, 2, 7732–7738. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, J.; Lei, G.; Zhu, Z.; Rudolph, V. Halloysite-Nanotube-Supported Ru Nanoparticles for Ammonia Catalytic Decomposition to Produce COx-Free Hydrogen. Energy Fuels 2011, 25, 3408–3416. [Google Scholar]
- Wang, R.; Jiang, G.; Ding, Y.; Yin, W.; Chen, W. Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. Acs Appl. Mater. Interfaces 2011, 3, 4154. [Google Scholar] [CrossRef] [PubMed]
- Brenner, W.E.; Zuspan, K. Synthetic laminaria for cervical dilatation prior to vacuum aspiration in midtrimester pregnancy. Am. J. Obstet. Gynecol. 1982, 143, 475–477. [Google Scholar] [CrossRef]
- Wu, H.; Huang, X.; Gao, M.; Liao, X.; Shi, B. Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction. Green Chem. 2011, 13, 651–658. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Hoag, G.; Collins, J.; Varma, R.S. Green Synthesis of Au Nanostructures at Room Temperature Using Biodegradable Plant Surfactants. Cryst. Growth Des. 2009, 9, 4979–4983. [Google Scholar] [CrossRef]
- Ramadass, K.; Singh, G.; Lakhi, K.S.; Benzigar, M.R.; Vinu, A. Halloysite nanotubes: Novel and eco-friendly adsorbents for high-pressure CO2 capture. Microporous Mesoporous Mater. 2018, 277, 229–236. [Google Scholar] [CrossRef]
Samples | Spiked Concentration (ng mL−1) | HPLC | SERS Sensors | ||||
---|---|---|---|---|---|---|---|
Detection Value (ng mL−1) Mean ± SD | Recovery Rate (%) | RSD (%) | Detection Value (ng mL−1) Mean ± SD | Recovery Rate (%) | RSD (%) | ||
PC bottle | 0 | 45.3 ± 0.6 | - | 0.9 | 44.7 ± 1.7 | - | 3.2 |
1 | 45.7 ± 0.4 | 87.0 | 0.3 | 45.9 ± 2.4 | 104.3 | 4.1 | |
10 | 55.2 ± 0.7 | 104.2 | 1.1 | 46.3 ± 2.9 | 113 | 4.4 | |
50 | 96.1 ± 0.9 | 100.7 | 0.8 | 93.5 ± 4.3 | 96.9 | 6.4 | |
100 | 145.6 ± 0.9 | 100.5 | 0.4 | 144.8 ± 1.8 | 99.8 | 2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; He, D.; Li, S.; Chen, R.; Peng, Y.; Li, S.; Han, D.; Wang, Y.; Qin, K.; Ren, S.; et al. Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@Ag Core–Shell Nanotags for Bisphenol A Determination. Biosensors 2022, 12, 387. https://doi.org/10.3390/bios12060387
Li S, He D, Li S, Chen R, Peng Y, Li S, Han D, Wang Y, Qin K, Ren S, et al. Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@Ag Core–Shell Nanotags for Bisphenol A Determination. Biosensors. 2022; 12(6):387. https://doi.org/10.3390/bios12060387
Chicago/Turabian StyleLi, Sen, Defu He, Shuning Li, Ruipeng Chen, Yuan Peng, Shuang Li, Dianpeng Han, Yu Wang, Kang Qin, Shuyue Ren, and et al. 2022. "Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@Ag Core–Shell Nanotags for Bisphenol A Determination" Biosensors 12, no. 6: 387. https://doi.org/10.3390/bios12060387
APA StyleLi, S., He, D., Li, S., Chen, R., Peng, Y., Li, S., Han, D., Wang, Y., Qin, K., Ren, S., Chen, P., & Gao, Z. (2022). Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@Ag Core–Shell Nanotags for Bisphenol A Determination. Biosensors, 12(6), 387. https://doi.org/10.3390/bios12060387