Detection of DNA Methyltransferase Activity via Fluorescence Resonance Energy Transfer and Exonuclease-Mediated Target Recycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Optimization of the Experimental Conditions
2.4. Detection of MTase
2.5. Inhibition Assay of MTase Activity
3. Results
3.1. Principle of the MTase Detection
3.2. Feasibility of MTase Assay
3.3. Optimization of Experimental Conditions
3.4. Assay of MTase Activity
3.5. Specificity of the Method for Detecting MTase Activity
3.6. MTase-Activity Inhibition Assay
3.7. Detection of the MTase Activity in Complex Biological Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergougnoux, A.; Claustres, M.; De Sario, A. Nasal epithelial cells: A tool to study DNA methylation in airway diseases. Epigenomics 2015, 7, 119–126. [Google Scholar] [CrossRef]
- Della Ragione, F.; Mastrovito, P.; Campanile, C.; Conti, A.; Papageorgiou, E.A.; Hultén, M.A.; Patsalis, P.C.; Carter, N.P.; D’Esposito, M. Differential DNA methylation as a tool for noninvasive prenatal diagnosis (NIPD) of X chromosome aneuploidies. J. Mol. Diagn. 2010, 12, 797–807. [Google Scholar] [CrossRef]
- Poh, W.J.; Wee, C.P.; Gao, Z. DNA methyltransferase activity assays: Advances and challenges. Theranostics 2016, 6, 369–391. [Google Scholar] [CrossRef]
- Li, Y.; Zou, X.; Ma, F. Development of fluorescent methods for DNA methyltransferase assay. Methods Appl. Fluoresc. 2017, 5, 012002. [Google Scholar] [CrossRef] [Green Version]
- Mishaeli, M.; Berkovich, L.; Shpitz, B.; Hag-Yahiya, N.; Pulverer, W.; Weinhäusel, A.; Ghinea, R.; Avital, S. Tissue DNA methylation as a tool for clinical decision making after neo-adjuvant treatment in rectal cancer. Ann. Oncol. 2017, 28, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, Z.L.; Lin, H.; Nie, Z.; Chen, J.; Xu, X.; Yao, S. Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy. Anal. Chem. 2010, 82, 1935–1941. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, K.; Zhang, R.; Yin, H.; Zhou, Y.; Ai, S. A colorimetric assay of DNA methyltransferase activity based on the keypad lock of duplex DNA modified meso-SiO2@Fe3O4. Anal. Chim. Acta 2016, 920, 80–85. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Xiong, E.; Yu, P.; Chen, J. A label-free electrochemical strategy for highly sensitive methyltransferase activity assays. Chem. Commun. 2015, 51, 5081–5084. [Google Scholar] [CrossRef]
- Hong, L.; Wan, J.; Zhang, X.; Wang, G. DNA-gold nanoparticles network based electrochemical biosensors for DNA MTase activity. Talanta 2016, 152, 228–235. [Google Scholar] [CrossRef]
- Kahveci, Z.; Martinez-Tomé, M.J.; Mallavia, R.; Mateo, C.R. Use of the conjugated polyelectrolyte poly{[9,9-bis(6′-N,N,N-trimethylammonium)hexyl]fluorene-phenylene} bromide (HTMA-PFP) as a fluorescent membrane marker. Biomacromolecules 2013, 14, 1990–1998. [Google Scholar] [CrossRef]
- Lu, X.; Jia, H.; Yan, X.; Wang, J.; Wang, Y.; Liu, C. Label-free detection of histone based on cationic conjugated polymer-mediated fluorescence resonance energy transfer. Talanta 2018, 180, 150–155. [Google Scholar] [CrossRef]
- Hu, T.; Yan, Y.; Tang, Z.; Liu, X.; Ma, C. Detection of streptavidin based on terminal protection and cationic conjugated polymer-mediated fluorescence resonance energy transfer. Polymers 2021, 13, 725. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Hu, W.; Jing, J.; Zhang, X. One-step G-quadruplex-based fluorescence resonance energy transfer sensing method for ratiometric detection of uracil-DNA glycosylase activity. Talanta 2021, 221, 121609. [Google Scholar] [CrossRef]
- Liu, L.; He, F.; Yu, Y.; Wang, Y. Application of FRET biosensors in mechanobiology and mechanopharmacological screening. Front. Bioeng. Biotechnol. 2020, 8, 595497. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huang, C.; Emery, B.P.; Sedgwick, A.C.; Bull, S.D.; He, X.P.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, L.; Zhao, L.; Li, M.; Wen, Y. An fluorescence resonance energy transfer sensing platform based on signal amplification strategy of hybridization chain reaction and triplex DNA for the detection of Chloramphenicol in milk. Food Chem. 2021, 357, 129769. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Z.; Chen, M.; He, H.; Zhang, X.; Wang, S. Ratiometric electrochemical biosensor based on Exo III-Assisted recycling amplification for the detection of CAG trinucleotide repeats. Biosens. Bioelectron. 2019, 142, 111537. [Google Scholar] [CrossRef]
- Xu, L.; Shen, X.; Li, B.; Zhu, C.; Zhou, X. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine. Anal. Chim. Acta 2017, 980, 58–64. [Google Scholar] [CrossRef]
- Moosavi, E.; Rafiei, A.; Yazdani, Y.; Eslami, M.; Saeedi, M. Association of serum levels and receptor genes BsmI, TaqI and FokI polymorphisms of vitamin D with the severity of multiple sclerosis. J. Clin. Neurosci. 2021, 84, 75–81. [Google Scholar] [CrossRef]
- Nakano, S.; Tomaru, Y.; Kubota, T.; Takase, H.; Mochizuki, M.; Shimizu, N.; Sugita, S.; Direct Strip Polymerase Chain Reaction Project Groups. Multiplex solid-phase real-time polymerase chain reaction without DNA extraction: A rapid intraoperative diagnosis using microvolumes. Ophthalmology 2021, 128, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Pan, Y.; Gu, B.; Chen, J.; Xu, Y.; Su, P.; Liu, Y.; Tonga, L.; Wang, L. Highly sensitive detection of nucleic acids using a cascade amplification strategy based on exonuclease III-assisted target recycling and conjugated polyelectrolytes. Analyst 2018, 143, 4267–4672. [Google Scholar] [CrossRef]
- Xing, X.W.; Tang, F.; Wu, J.; Chu, J.M.; Feng, Y.Q.; Zhou, X.; Yuan, B.F. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling. Anal. Chem. 2014, 86, 11269–11274. [Google Scholar] [CrossRef] [PubMed]
- Kermani, H.A.; Hosseini, M.; Dadmehr, M.; Ganjali, M.R. Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters. Anal. Bioanal. Chem. 2016, 408, 4311–4318. [Google Scholar] [CrossRef]
- Su, J.; He, X.; Wang, Y.; Wang, K.; Chen, Z.; Yan, G. A sensitive signal-on assay for MTase activity based on methylation-responsive hairpin-capture DNA probe. Biosens. Bioelectron. 2012, 36, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ma, C.; Zhou, M.; Chen, H.; He, H.; Wang, K. Quencher-free fluorescence strategy for detection of DNA methyltransferase activity based on exonuclease III-assisted signal amplification. Anal. Bioanal. Chem. 2016, 408, 8111–8116. [Google Scholar] [CrossRef]
- Ma, C.; Liu, H.; Li, W.; Chen, H.; Jin, S.; Wang, J.; Wang, J. Label-free monitoring of DNA methyltransferase activity based on terminal deoxynucleotidyl transferase using a thioflavin T probe. Mol. Cell. Probes 2016, 30, 118–121. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, L.; Zhang, L.; Liao, S.; Zhao, J. A sensitive strategy for the fluorescence detection of DNA methyltransferase activity based on the graphene oxide platform and T7 exonuclease-assisted cyclic signal amplification. Analyst 2015, 140, 4076–4082. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Xing, X.W.; Chu, J.M.; Yuan, Q.; Zhou, X.; Feng, Y.Q.; Yuan, B.F. A highly sensitive fluorescence assay for methyltransferase activity by exonuclease-aided signal amplification. Analyst 2015, 140, 4636–4641. [Google Scholar] [CrossRef]
Methods | Materials | LOD (U/mL) | Dynamic Range (U/mL) | Reference |
---|---|---|---|---|
Electrochemical | Au nanoparticle | 0.02 | 0.075–30 | [9] |
Electrochemical | Methylene blue | 0.07 | 0.1–10 | [6] |
Colorimetric | G-quadruplex | 6 | 6–100 | [23] |
Fluorescence | Ag nanocluster | 0.1 | 0.4–20 | [24] |
Fluorescence | 2-Aminopurine | 0.2 | 0.2–40 | [25] |
Fluorescence | Thioflavin T | 0.1 | 0.1–8 | [26] |
Fluorescence | PFP | 0.045 | 0.5–20 | This work |
Sample | Added (U/mL) | Found (U/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 5 | 4.70 ± 0.24 | 93.98% | 5.17 |
2 | 10 | 9.79 ± 0.30 | 97.91% | 3.09 |
3 | 15 | 15.78 ± 0.56 | 105.19% | 3.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Ma, C.; Yan, Y.; Chen, J. Detection of DNA Methyltransferase Activity via Fluorescence Resonance Energy Transfer and Exonuclease-Mediated Target Recycling. Biosensors 2022, 12, 395. https://doi.org/10.3390/bios12060395
Hu T, Ma C, Yan Y, Chen J. Detection of DNA Methyltransferase Activity via Fluorescence Resonance Energy Transfer and Exonuclease-Mediated Target Recycling. Biosensors. 2022; 12(6):395. https://doi.org/10.3390/bios12060395
Chicago/Turabian StyleHu, Tingting, Changbei Ma, Ying Yan, and Junxiang Chen. 2022. "Detection of DNA Methyltransferase Activity via Fluorescence Resonance Energy Transfer and Exonuclease-Mediated Target Recycling" Biosensors 12, no. 6: 395. https://doi.org/10.3390/bios12060395
APA StyleHu, T., Ma, C., Yan, Y., & Chen, J. (2022). Detection of DNA Methyltransferase Activity via Fluorescence Resonance Energy Transfer and Exonuclease-Mediated Target Recycling. Biosensors, 12(6), 395. https://doi.org/10.3390/bios12060395