Real-Time Phase-Contrast MRI to Monitor Cervical Blood and Cerebrospinal Fluid Flow Beat-by-Beat Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. MRI Acquisitions
2.2. MRI Image Processing
2.3. Flow signal Processing
2.4. Pulse Shape Analysis
2.5. Beat-by-Beat Variability Spectral Analysis
2.6. Statistical Analysis
3. Results
3.1. Extraction of BBV Series
3.2. AR PSD Analysis of BBV Series
3.3. Pulse Waves and the Influence of Breathing Phase
4. Discussion
4.1. BBV Analysis
4.2. Pulse Wave Analyses and Respiratory Modulation
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayer, S. Studies about the physiology of heart and blood vessels [Studien zur Physiologie des Herzens und der Blutgefässe]. Sitz. Math.-Nat. Cl. Wien 1876, 74, 281–307. [Google Scholar]
- Paulson, O.B.; Strandgaard, S.; Edvinsson, L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 1990, 2, 161–192. [Google Scholar] [PubMed]
- Baselli, G.; Porta, A.; Pagani, M. Coupling arterial windkessel with peripheral vasomotion: Modeling the effects on low-frequency oscillations. J. IEEE Trans. Biomed. Eng. 2005, 53, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Koepchen, H. Histories of studies and concepts of blood pressure waves. In Mechanisms of Blood Pressure Waves; Japan Science Society Press: Tokyo, Japan; Springer: Berlin, Germany, 1984. [Google Scholar]
- Akselrod, S.; Gordon, D.; Ubel, F.A.; Shannon, D.C.; Berger, A.C.; Cohen, R.J. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science 1981, 213, 220–222. [Google Scholar] [CrossRef]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Piccaluga, E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 1986, 59, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Panerai, R.B.; Rennie, J.M.; Kelsall, A.W.; Evans, D.H. Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure. Med. Biol. Eng. Comput. 1998, 36, 315–322. [Google Scholar] [CrossRef]
- Yildiz, S.; Thyagaraj, S.; Jin, N.; Zhong, X.; Heidari Pahlavian, S.; Martin, B.A.; Loth, F.; Oshinski, J.; Sabra, K.G. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI. J. Magn. Reson. Imaging 2017, 46, 431–439. [Google Scholar] [CrossRef]
- Lagana, M.M.; Di Rienzo, M.; Rizzo, F.; Ricci, C.; D’Onofrio, S.; Forzoni, L.; Cecconi, P. Cardiac, Respiratory and Postural Influences on Venous Return of Internal Jugular and Vertebral Veins. Ultrasound. Med. Biol. 2017, 43, 1195–1204. [Google Scholar] [CrossRef]
- Ciuti, G.; Righi, D.; Forzoni, L.; Fabbri, A.; Pignone, A.M. Differences between internal jugular vein and vertebral vein flow examined in real time with the use of multigate ultrasound color Doppler. Am. J. Neuroradiol. 2013, 34, 2000–2004. [Google Scholar] [CrossRef] [Green Version]
- Zamboni, P.; Menegatti, E.; Pomidori, L.; Morovic, S.; Taibi, A.; Malagoni, A.M.; Cogo, A.L.; Gambaccini, M. Does thoracic pump influence the cerebral venous return? Appl. Physiol. 2012, 112, 904–910. [Google Scholar] [CrossRef] [Green Version]
- Zivadinov, R. Is there a link between the extracranial venous system and central nervous system pathology? BMC Med. 2013, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Muller, L.O.; Toro, E.F.; Haacke, E.M.; Utriainen, D. Impact of CCSVI on cerebral haemodynamics: A mathematical study using MRI angiographic and flow data. Phlebology 2016, 31, 305–324. [Google Scholar] [CrossRef]
- Baselli, G.; Laganà, M.M. The intracranial Windkessel implies arteriovenous pulsatile coupling increased by venous resistances. Biomed. Signal Process. Control 2022, 71, 103092. [Google Scholar] [CrossRef]
- Tain, R.W.; Alperin, N. Noninvasive intracranial compliance from MRI-based measurements of transcranial blood and CSF flows: Indirect versus direct approach. IEEE Trans. Biomed. Eng. 2009, 56, 544–551. [Google Scholar] [CrossRef]
- Beggs, C.B.; Shepherd, S.J.; Cecconi, P.; Lagana, M.M.J.A.S. Predicting the aqueductal cerebrospinal fluid pulse: A statistical approach. Appl. Sci. 2019, 9, 2131. [Google Scholar] [CrossRef] [Green Version]
- Laganà, M.M.; Shepherd, S.J.; Cecconi, P.; Beggs, C.B. Intracranial volumetric changes govern cerebrospinal fluid flow in the Aqueduct of Sylvius in healthy adults. Biomed. Signal Process. Control 2017, 36, 84–92. [Google Scholar] [CrossRef]
- Toro, E.F.; Celant, M.; Zhang, Q.; Contarino, C.; Agarwal, N.; Linninger, A.; Müller, L.O. Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: Mathematical models, numerical methods and applications. Int. J. Numer. Methods Biomed. Eng. 2021, 38, e3532. [Google Scholar] [CrossRef]
- Ursino, M. A mathematical study of human intracranial hydrodynamics. Part 1—The cerebrospinal fluid pulse pressure. Ann. Biomed. Eng. 1988, 16, 379–401. [Google Scholar] [CrossRef]
- Jiang, J.; Kokeny, P.; Ying, W.; Magnano, C.; Zivadinov, R.; Haacke, E.M. Quantifying errors in flow measurement using phase contrast magnetic resonance imaging: Comparison of several boundary detection methods. Magn. Reson. Imaging 2015, 33, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis Jbr the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 18–74. [Google Scholar]
- Monro, A. Observations on the Structure and Functions of the Nervous System. Lond. Med. J. 1783, 4, 113–135. [Google Scholar]
- Kellie, G. An Account of the Appearances Observed in the Dissection of Two of Three Individuals Presumed to Have Perished in the Storm of the 3d, and Whose Bodies Were Discovered in the Vicinity of Leith on the Morning of the 4th, November 1821; with Some Reflections on the Pathology of the Brain: Part I. Transactions. Med.-Chir. Soc. Edinb. 1824, 1, 84. [Google Scholar]
- Alperin, N. Does the brain have mechanical compliance? J. Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 753–756. [Google Scholar] [CrossRef]
- Attarpour, A.; Ward, J.; Chen, J.J. Vascular origins of low-frequency oscillations in the cerebrospinal fluid signal in resting-state fMRI: Interpretation using photoplethysmography. J. Hum. Brain Mapp. 2021, 42, 2606–2622. [Google Scholar] [CrossRef]
- Van Veluw, S.J.; Hou, S.S.; Calvo-Rodriguez, M.; Arbel-Ornath, M.; Snyder, A.C.; Frosch, M.P.; Greenberg, S.M.; Bacskai, B.J. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 2020, 105, 549–561.e545. [Google Scholar] [CrossRef]
- Critchley, H.D.; Nicotra, A.; Chiesa, P.A.; Nagai, Y.; Gray, M.A.; Minati, L.; Bernardi, L. Slow breathing and hypoxic challenge: Cardiorespiratory consequences and their central neural substrates. PLoS ONE 2015, 10, e0127082. [Google Scholar] [CrossRef]
- Bernardi, L.; Porta, C.; Sleight, P. Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: The importance of silence. Heart 2006, 92, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, N.F.; Bordino, M.; Bianchi, L.; Bernardi, L. Acute fall and long-term rise in oxygen saturation in response to meditation. Psychophysiology 2017, 54, 1951–1966. [Google Scholar] [CrossRef] [PubMed]
- Schoning, M.; Walter, J.; Scheel, P. Estimation of cerebral blood flow through color duplex sonography of the carotid and vertebral arteries in healthy adults. Stroke 1994, 25, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alperin, N.; Hushek, S.G.; Lee, S.H.; Sivaramakrishnan, A.; Lichtor, T. MRI study of cerebral blood flow and CSF flow dynamics in an upright posture: The effect of posture on the intracranial compliance and pressure. Acta Neurochir. Suppl. 2005, 95, 177–181. [Google Scholar] [CrossRef]
- Muccio, M.; Chu, D.; Minkoff, L.; Kulkarni, N.; Damadian, B.; Damadian, R.V.; Ge, Y. Upright versus supine MRI: Effects of body position on craniocervical CSF flow. Fluids Barriers CNS 2021, 18, 61. [Google Scholar] [CrossRef]
- Baselli, G.; Porta, A.; Rimoldi, O.; Pagani, M.; Cerutti, S. Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Trans. Biomed. Eng. 1997, 44, 1092–1101. [Google Scholar] [CrossRef]
- Dreha-Kulaczewski, S.; Joseph, A.A.; Merboldt, K.D.; Ludwig, H.C.; Gartner, J.; Frahm, J. Inspiration is the major regulator of human CSF flow. J. Neurosci. 2015, 35, 2485–2491. [Google Scholar] [CrossRef]
- Ohno, N.; Miyati, T.; Noda, T.; Alperin, N.; Hamaguchi, T.; Ohno, M.; Matsushita, T.; Mase, M.; Gabata, T.; Kobayashi, S.J.D. Fast Phase-Contrast Cine MRI for Assessing Intracranial Hemodynamics and Cerebrospinal Fluid Dynamics. Diagnostics 2020, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Aktas, G.; Kollmeier, J.M.; Joseph, A.A.; Merboldt, K.-D.; Ludwig, H.-C.; Gärtner, J.; Frahm, J.; Dreha-Kulaczewski, S.J.F. Spinal CSF flow in response to forced thoracic and abdominal respiration. Fluids Barriers CNS 2019, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Kollmeier, J.M.; Gürbüz-Reiss, L.; Sahoo, P.; Badura, S.; Ellebracht, B.; Keck, M.; Gärtner, J.; Ludwig, H.-C.; Frahm, J.; Dreha-Kulaczewski, S. Deep breathing couples CSF and venous flow dynamics. Sci. Rep. 2022, 12, 2568. [Google Scholar] [CrossRef]
- Dreha-Kulaczewski, S.; Joseph, A.A.; Merboldt, K.D.; Ludwig, H.C.; Gartner, J.; Frahm, J. Identification of the Upward Movement of Human CSF In Vivo and its Relation to the Brain Venous System. J. Neurosci. 2017, 37, 2395–2402. [Google Scholar] [CrossRef] [Green Version]
- Angelone, A.; Coulter JR, N.A. Respiratory sinus arrhythmia: A frequency dependent phenomenon. J. Appl. Physiol. 1964, 19, 479–482. [Google Scholar] [CrossRef]
- Hyndman, B.; Kitney, R.; Sayers, B.M. Spontaneous rhythms in physiological control systems. Nature 1971, 233, 339–341. [Google Scholar] [CrossRef]
- Pelizzari, L.; Laganà, M.M.; Baglio, F.; Bergsland, N.; Cecconi, P.; Viotti, S.; Pugnetti, L.; Nemni, R.; Baselli, G.; Clerici, M. Cerebrovascular reactivity and its correlation with age in patients with multiple sclerosis. Brain Imaging Behav. 2020, 14, 1889–1898. [Google Scholar] [CrossRef] [Green Version]
- Pelizzari, L.; Laganà, M.M.; Rossetto, F.; Bergsland, N.; Galli, M.; Baselli, G.; Clerici, M.; Nemni, R.; Baglio, F. Cerebral blood flow and cerebrovascular reactivity correlate with severity of motor symptoms in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419838354. [Google Scholar] [CrossRef] [Green Version]
- Marshall, O.; Lu, H.; Brisset, J.-C.; Xu, F.; Liu, P.; Herbert, J.; Grossman, R.I.; Ge, Y. Impaired cerebrovascular reactivity in multiple sclerosis. JAMA Neurol. 2014, 71, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
Series | Mean | |||||
---|---|---|---|---|---|---|
[s] | [s]2 | [Hz] | [n.u.] | [Hz] | [n.u.] | |
0.8 ± 0.1 | 0.0089 ± 0.0124 | 0.12 ± 0.01 | 21.0 ± 24.0 | 0.25 ± 0.06 | 61.8 ± 20.1 | |
0.8 ± 0.2 | 0.0077 ± 0.0087 | 0.10 ± 0.03 | 16.1 ± 22.6 | 0.26 ± 0.05 | 57.1 ± 18.4 | |
[mL/s] | [mL/s]2 | [Hz] | [n.u.] | [Hz] | [n.u.] | |
11.1 ± 2.6 | 0.389 ± 0.598 d | 0.10 ± 0.02 | 29.5 ± 27.9i | 0.26 ± 0.06 | 54.3 ± 26.2 | |
5.1 ± 1.4 | 0.230 ± 0.191 b,e | 0.10 ± 0.02 | 45.2 ± 31.0 i | 0.26 ± 0.07 | 45.3 ± 33.7 k | |
−9.7 ± 3.4 | 0.322 ± 0.446 a,f | 0.09 ± 0.03 | 18.9 ± 25.3 j | 0.28 ± 0.05 | 58.0 ± 24.0 | |
−6.0 ± 2.1 | 0.662 ± 0.697 a,b,c,g | 0.09 ± 0.03 | 31.8 ± 26.6 j | 0.26 ± 0.05 | 56.6 ± 27.7 l | |
−2.3 ± 0.7 | 0.091 ± 0.082 d,f,h | 0.10 ± 0.02 | 23.7 ± 24.8 | 0.26 ± 0.05 | 64.4 ± 25.4 | |
1.4 ± 0.5 | 0.054 ± 0.048 c,e,g,h | 0.10 ± 0.03 | 26.8 ± 26.0 | 0.25 ± 0.05 | 72.0 ± 21.1 k,l |
Signal | All | Insp | Exp | ∆ Insp-Exp | p-Value of ∆ |
---|---|---|---|---|---|
Mean AF | 7.39 ± 1.72 | 7.32 ± 1.65 | 7.26 ± 1.64 | 0.0607 | 0.068 |
Mean VF | −7.28 ± 2.28 | −7.35 ± 2.45 | −7.25 ± 2.23 | −0.0954 | 0.216 |
Mean CSFF | 0.111 ± 0.134 | 0.085 ± 0.098 | 0.093 ± 0.134 | −0.0084 | 0.772 |
Syst AF | 10.29 ± 2.44 | 10.20 ± 2.42 | 10.08 ± 2.39 | 0.1244 | 0.059 |
Syst VF | −9.08 ± 3.14 | −9.21 ± 3.35 | −9.16 ± 3.17 | −0.0493 | 0.524 |
Syst CSFF | −1.81 ± 0.60 | −1.87 ± 0.60 | −1.80 ± 0.62 | −0.0733 | 0.062 |
Dia AF | 5.11 ± 1.37 | 5.02 ± 1.26 | 5.02 ± 1.26 | 0.0063 | 0.875 |
Dia VF | −5.90 ± 2.05 | −5.96 ± 2.13 | −5.88 ± 2.08 | −0.0830 | 0.310 |
Dia CSFF | 1.44 ± 0.53 | 1.38 ± 0.42 | 1.41 ± 0.42 | −0.0267 | 0.416 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baselli, G.; Fasani, F.; Pelizzari, L.; Cazzoli, M.; Baglio, F.; Laganà, M.M. Real-Time Phase-Contrast MRI to Monitor Cervical Blood and Cerebrospinal Fluid Flow Beat-by-Beat Variability. Biosensors 2022, 12, 417. https://doi.org/10.3390/bios12060417
Baselli G, Fasani F, Pelizzari L, Cazzoli M, Baglio F, Laganà MM. Real-Time Phase-Contrast MRI to Monitor Cervical Blood and Cerebrospinal Fluid Flow Beat-by-Beat Variability. Biosensors. 2022; 12(6):417. https://doi.org/10.3390/bios12060417
Chicago/Turabian StyleBaselli, Giuseppe, Federica Fasani, Laura Pelizzari, Marta Cazzoli, Francesca Baglio, and Maria Marcella Laganà. 2022. "Real-Time Phase-Contrast MRI to Monitor Cervical Blood and Cerebrospinal Fluid Flow Beat-by-Beat Variability" Biosensors 12, no. 6: 417. https://doi.org/10.3390/bios12060417
APA StyleBaselli, G., Fasani, F., Pelizzari, L., Cazzoli, M., Baglio, F., & Laganà, M. M. (2022). Real-Time Phase-Contrast MRI to Monitor Cervical Blood and Cerebrospinal Fluid Flow Beat-by-Beat Variability. Biosensors, 12(6), 417. https://doi.org/10.3390/bios12060417