Nanocomposite of MgFe2O4 and Mn3O4 as Polyphenol Oxidase Mimic for Sensing of Polyphenols
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Synthesis of MgFe2O4 NPs, Mn3O4 NPs, and MgFe2O4@Mn3O4 NC and Its Characterization
2.3. PPO-Mimic Activity and Kinetic Analysis
- “V” stands for reaction rate,
- Vmax for maximum velocity of reaction,
- S is the substrate concentration, and
- Km stands for Apparent Michaelis constant, which indicates the affinity of enzyme or enzyme mimic for its substrate. Lower value of Km corresponds to higher efficiency of catalyst.
2.4. Box-Behnken Approach for Atatistical Analysis
2.5. Detection of Catechol and Resorcinol Based on MgFe2O4@Mn3O4 (1:2) Polyphenol Oxidase
2.6. Detection of Polyphenols in Tea Samples Based on MgFe2O4@Mn3O4 (1:2) Polyphenol Oxidase Mimic
2.7. Recyclability Test
3. Results and Discussions
3.1. Characterization of Synthesized NPs
3.1.1. Structural Analysis
3.1.2. Morphological and Magnetic Studies
3.2. PPO-Mimic Activity
3.3. Kinetic Studies of PPO-Like Activity and Recyclability Test
3.4. Mechanism of PPO Mimic Activity
3.5. The Statistical Analysis Findings
3.6. Standardization of the Experimental Parameters
3.7. Colorimetric Detection of Catechol and Resorcinol
3.8. Colorimetric Sensing of Polyphenols in Tea Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daniel, R.M.; Dines, M.; Petach, H.H. The denaturation and dehydration of stable enzyme at high temperatures. Biochem. J. 1996, 317, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Batista, C.A.S.; Larson, R.G.; Kotov, N.A. Nonadditivity of nanoparticle interactions. Science 2015, 350, 1242477. [Google Scholar] [CrossRef] [Green Version]
- Long, M.; Jiang, J.; Li, Y.; Cao, R.; Zhang, L.; Cai, W. Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO4: Effective inorganic photocatalysis for H2O2 production from H2O and O2 under visible light. Nano-Micro Lett. 2011, 3, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Natalio, F.; Andre, R.; Hartog, A.F.; Stoll, B.; Jochum, K.P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium halo peroxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Comm. 2011, 47, 6695–6697. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Huang, Y.; Huang, J.; Liu, W.; Yao, T.; Jiang, S.; Tang, F.; Liu, J.; Hu, F.; Pan, Z.; et al. Ultrathin CoOOH oxides nanosheets realizing efficient photocatalytic hydrogen evolution. J. Phys. Chem. C 2015, 119, 26362–26366. [Google Scholar] [CrossRef]
- Dumore, N.S.; Mukhopadhyay, M. Sensitivity enhanced SeNPs-FTO electrochemical sensor for hydrogen peroxide detection. J. Electroanal. Chem. 2020, 878, 114544. [Google Scholar] [CrossRef]
- Wu, C.W.; Unnikrishnan, B.; Tseng, Y.T.; Wei, S.C.; Chang, H.T.; Huang, C.C. Mesoporous manganese oxide/manganese ferrite nanopopcorns with dual enzyme mimic activities: A cascade reaction for selective detection of ketoses. J. Colloid Interface Sci. 2019, 541, 75–85. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, M.; Song, Y.; Liu, Q.; Zhang, Y.; Zhuang, Y.; Chen, S. Synthesis of ZnFe2O4/ZnO heterostructures decorated three-dimensional graphene foam as peroxidase mimetics for colorimetric assay of hydroquinone. Sens. Actuator. B Chem. 2019, 283, 130–137. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Lertvachirapaiboon, C.; Kiyokawa, I.; Baba, A.; Shinbo, K.; Kato, K. Colorimetric determination of hydrogen peroxide based on localized surface plasmon resonance of silver nanoprisms using a microchannel chip. Anal. Lett. 2019, 52, 1939–1950. [Google Scholar] [CrossRef]
- Du, H.; Zhang, X.; Liu, Z.; Qu, F. A supersensitive biosensor based on MoS2 nanosheet arrays for the real-time detection of H2O2 secreted from living cells. Chem. Commun. 2019, 55, 9653–9656. [Google Scholar] [CrossRef]
- Yu, J.; Cao, M.; Wang, H.; Li, Y. Novel manganese (II)-based metal-organic gels: Synthesis, characterization and application to chemiluminescent sensing of hydrogen peroxide and glucose. Microchim. Acta 2019, 186, 696. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Z.; Huang, W.; Liu, L.; Li, J.; Li, J.; Wu, Q. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets. Sci. Rep. 2016, 6, 35344. [Google Scholar] [CrossRef]
- Ashour, A.H.; El-Batal, A.I.; Maksoud, M.A.; El-Sayyad, G.S.; Labib, S.; Abdeltwab, E.; El-Okr, M.M. Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 2018, 40, 141–151. [Google Scholar] [CrossRef]
- Verma, V.; Kaur, M.; Sharma, S. Superoxide dismutase mimic activity of spinel ferrite MFe2O4 M=Mn, Co and Cu) nanoparticles. Bull. Mater. Sci. 2019, 42, 120. [Google Scholar]
- Hosseini, M.; Sabet, F.S.; Khabbaz, H.; Aghazadeh, M.; Mizani, F.; Ganjali, M.R. Enhancement of the peroxidase-like activity of cerium-doped ferrite nanoparticles for colorimetric detection of H2O2 and glucose. Anal. Methods 2017, 9, 3519–3524. [Google Scholar] [CrossRef]
- Moccelini, S.K.; Fernandes, S.C.; De Camargo, T.P.; Neves, A.; Vieira, I.C. Self-assembled monolayer of nickel(II) complex and thiol on gold electrode for the determination of catechin. Talanta 2009, 78, 1063–1068. [Google Scholar] [CrossRef]
- Ulbrich, K.D.F.; Winiarski, P.J.; Jost, C.L.; De Campos, C.E.M. Green and facile solvent-free synthesis of NiTe2 nanocrystalline material applied to voltammetric determination of antioxidant morin. Mater. Today Commun. 2020, 25, 101251. [Google Scholar] [CrossRef]
- De Carvalho, M.L.; Santhiago, M.; Peralta, R.A.; Neves, A.; Micke, G.A.; Vieira, I.C. Determination of chlorogenic acid in coffee using a biomimetic sensor based on a new tetranuclear copper (II) complex. Talanta 2008, 74, 394–399. [Google Scholar] [CrossRef]
- Navadeepthy, D.; Rebekah, A.; Viswanathan, C.; Ponpandian, N. N-doped Graphene/ZnFe2O4: A novel nanocomposite for intrinsic peroxidase based sensing of H2O2. Mater. Res. Bull. 2017, 95, 1–8. [Google Scholar]
- Su, L.; Feng, J.; Zhou, X.; Ren, C.; Li, H.; Chen, X. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012, 84, 5753–5758. [Google Scholar] [CrossRef]
- Garg, D.; Kaur, M.; Sharma, S.; Verma, V. Effect of CTAB coating on structural, magnetic and peroxidase mimic activity of ferric oxide nanoparticles. Bull. Mater. Sci. 2018, 41, 134. [Google Scholar] [CrossRef] [Green Version]
- Singh, E.; Kaur, M.; Sharma, S. Stuning of CTAB@MgFe2O4 nanocomposite as peroxidase mimic for H2O2 and glucose sensing. Mat. Chem. Phys. 2021, 271, 124851. [Google Scholar] [CrossRef]
- Gatselou, V.; Christodouleas, D.C.; Kouloumpis, A.; Gournis, D.; Giokas, D.L. Determination of Phenolic Compounds Using Spectral and Color Transitions of Rhodium Nanoparticles. Anal. Chim. Acta 2016, 932, 80–87. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Sangha, M.K.; Ubhi, M.K. Comparitive evaluation of manganese oxide and its graphene oxide nanocomposite as polyphenol oxidase mimics. Mater. Today Commun. 2021, 27, 102237. [Google Scholar] [CrossRef]
- Verma, V.; Kaur, M.; Sharma, S. Insight into peroxidase and polyphenol oxidase mimic asctivity of spinel ferrite nanoparticles and their GO composites. Mater. Chem. Phys. 2022, 279, 125727. [Google Scholar] [CrossRef]
- Liebert, M.; Licht, U.; Bohm, V.; Bitsch, R. Antioxidative properties and total phenolic content of green and black tea under different brewing conditions. Eur. Food Res. Technol. 1999, 208, 217–220. [Google Scholar]
- Kaur, M.; Singh, M.; Mukhopadhyay, S.S.; Singh, D.; Gupta, M. Structural, magnetic and adsorptive properties of clay ferrite nanocomposite and its use for effective removal of Cr (VI) from water. J. Alloys Compd. 2015, 653, 202–211. [Google Scholar] [CrossRef]
- Zauberman, G.; Ronen, R.; Akerman, M.; Weksler, A.; Rot, I.; Fuchs, Y. Postharvest retention of the red colour of litchi fruit peri carp. Sci. Hort. 1991, 47, 89–97. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Al-Musawi, T.; Silva, F.M.; Panahi, A.H.; Havangi, M.; Mostafapur, F.K. Photocatalytic degradation of catechol using ZnO nanoparticles as catalyst: Optimizing the experimental parameters using the Box-Behnken statistical methodology and kinetic studies. Microchem. J. 2019, 147, 643–653. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, M. Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles. Process. Appl. Ceram. 2014, 8, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Spiers, H.; Parkin, I.P.; Pankhurst, Q.A.; Affleck, L.; Green, M.; Caruana, D.J.; Kvick, A. Self propagating high temperature synthesis of magnesium zinc ferrites (Mgx Zn1− x Fe2O3): Thermal imaging and time resolved X-ray diffraction experiments. J. Mater. Chem. 2004, 14, 1104–1111. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Branton, A.; Trivedi, D.; Nayak, G.; Bairwa, K.; Jana, S. Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J. Chromatogr. Sep. Tech. 2015, 6, 1000282. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.X.; Liang, Y.; Chen, H.; Meng, Y.F.; Jiang, W. Controlled synthesis of Mn3O4 and MnCO3 in a solvothermal system. Mat. Res. Bull. 2009, 44, 1753–1759. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Han, Z.; Chen, L.; Qian, B.; Jiang, X.; Pinto, J.; Yang, G. Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene. J. Mater. Chem. A 2013, 1, 8385–8397. [Google Scholar] [CrossRef]
- Olmos, A.V.; Redon, R.; Gattorno, G.R.; Zamora, M.E.M.; Leal, F.M.; Osorio, A.L.F.; Saniger, J.M. One step synthesis of Mn3O4 nanoparticles: Structural and magnetic study. J. Colloid Interface Sci. 2005, 291, 175–180. [Google Scholar] [CrossRef]
- Pradeep, A.; Priyadharsini, P.; Chandrasekaran, G. Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 2008, 320, 2774–2779. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Wen, F.; Tan, J.; Peng, T.; Luo, B.; Yin, S. A flower-like MoS2- decorated MgFe2O4 nanocomposite: Mimicking peroxidase and colorimetric detection of H2O2 and glucose. Sens. Actuator B Chem. 2018, 275, 155–162. [Google Scholar] [CrossRef]
- Cullity, B.D. Some problems in X-ray stress measurements. Adv. X-ray Anal. 1976, 20, 259–271. [Google Scholar] [CrossRef]
- Singh, R.P.; Venkataraju, C. Effect of calcinations on the structural and magnetic properties of magnesium ferrite nanoparticles prepared by sol gel method. China J. Phys. 2018, 56, 2218–2225. [Google Scholar] [CrossRef]
- Torelli, S.; Belle, C.; Hamman, S.; Pierre, J.L.; Saint-Aman, E. Substrate binding in catechol oxidase activity: Biomimetic approach. Inorg. Chem. 2002, 41, 3983–3989. [Google Scholar] [CrossRef]
- Basak, T.; Ghosh, K.; Chattopadhyay, S. Synthesis, characterization and catechol oxidase mimicking activity of two iron(III) schiff base complexes. Polyhedron 2018, 146, 81–92. [Google Scholar] [CrossRef]
- Thankachan, S.; Jacob, B.P.; Xavier, S.; Mohammed, E.M. Effect of neodymium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. Phys. Scr. 2013, 87, 025701. [Google Scholar] [CrossRef]
- Ono, Y.; Matsumura, T.; Fukuzumi, S. Electron spin resonance studies on the mechanism of the form ation of p-benzosemiquinone anion over manganese dioxide. J. Chem. Soc. 1977, 2, 1421–1424. [Google Scholar]
- Kumari, P.V.K.; Yarraguntla, S.R.; Sharmila, M.; Gulibindala, E. Application of Box-Behnken Design for Formulation Parameters of Eslicarbazepine Tablets. Indian J. Pharm. Sci. 2021, 83, 575–583. [Google Scholar] [CrossRef]
- Tian, F.; Li, H.; Li, M.; Li, C.; Lei, Y.; Yang, B. Synthesis of one dimensional poly(3,4-ethylenedioxythiophene)-graphene composites for the simultaneous detection of hydroquinone, catechol, resorcinol, and nitrite. Synth. Met. 2017, 226, 148–156. [Google Scholar] [CrossRef]
- Wu, H.P.; Cheng, T.L.; Tseng, W.L. Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching. Langmuir 2007, 23, 7880–7885. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, W.; Wu, Q.S.; Wang, X.G. Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube modified electrodes by derivative voltammetry. J. Electroanal. Chem. 2005, 575, 275–280. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, Q.; Zhou, Y.; Ma, Q.; Liu, T.; Zhu, L.; Ai, S. Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim. Acta 2011, 56, 2748–2753. [Google Scholar] [CrossRef]
- Szydlowska-Czerniak, A.; Laszewska, A.; Tulodziecka, A. A novel iron oxide nanoparticle-based method for the determination of the antioxidant capacity of rapeseed oils at various stages of the refining process. Anal. Methods 2015, 7, 4650–4660. [Google Scholar] [CrossRef]
- Scroccarello, A.; Pelle, F.D.; Neri, L.; Pittia, P.; Compagnone, D. Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples. Food Res. Int. 2019, 119, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Van der Hoft, J.J.J.; Akermi, M.; Unlu, F.Y.; Mihaleva, V.; Roldan, V.G.; Bino, R.J.; de Vos, R.C.H.; Vervoort, J. Structural Annotation and Elucidation of conjugated phenolic compounds in black, green and white tea extracts. Agric. Food Chem. 2012, 60, 8841–8850. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Kukula-Koch, W.; Komsta, L.; Marzec, Z.; Szwerc, W.; Glowniak, K. Green tea quality evaluation based on its catechins and metal composition in combination with chemometric analysis. Molecules 2018, 23, 1689. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Yoon, S.; Lo, Y.M.; Wu, H.; Lee, S.Y.; Moon, B. Intrinsic polyphenol oxidase-like activity of gold platinum nanoparticles. RSC Adv. 2015, 5, 63757–63764. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Chong, Y.; Wamer, W.G.; Xia, Q.; Cai, L.; Nie, Z.; Fu, P.; Yin, J.J. Platinum nanoparticles: Efficient and stable catechol oxidase mimetics. ACS Appl. Mater. Interfaces 2015, 7, 19709–19717. [Google Scholar] [CrossRef]
Material Abbreviation | (NPs) | Lattice Constant (Å) | Average Particle Diameter (nm) | XRD Density g/cc |
---|---|---|---|---|
H-1 | MgFe2O4 | 8.40 | 11.0 | 4.5 |
H-2 | Mn3O4 | 5.95 | 15.0 | 14.4 |
NPs/(NC) | Saturation Magnetization (Ms) (emug−1) | Retentivity (Mr) (emug−1) | Coercivity (Hc) (Oe) |
---|---|---|---|
H-1 NPs | 23.34 | 4.05 | 103.4 |
H-2 NPs | 0.86 | 0.12 | 213.4 |
H-3 NC | 19.53 | 5.96 | 170.6 |
H-4 NC | 18.48 | 3.44 | 99.1 |
NPs/NC | BET Surface Area (m2g−1) | Pore Volume (ccg−1) | Pore Diameter (nm) |
---|---|---|---|
H-1 NPs | 32.81 | 0.03 | 3.11 |
H-2 NPs | 38.98 | 0.12 | 3.51 |
H-3 NC | 53.03 | 0.17 | 9.88 |
H-4 NC | 70.17 | 0.18 | 11.61 |
Runs | pH | Temperature | Catalyst Dose | Contact Time | Absorbance (Catechol) | Absorbance (Resorcinol) |
---|---|---|---|---|---|---|
1 | 5 | 10 | 6 | 11 | 1.9 | 1.8 |
2 | 5 | 60 | 3.5 | 20 | 1.8 | 1.9 |
3 | 5 | 35 | 3.5 | 11 | 1.9 | 2 |
4 | 5 | 35 | 3.5 | 11 | 2 | 2.2 |
5 | 1 | 10 | 3.5 | 11 | 2.2 | 2.5 |
6 | 1 | 35 | 6 | 11 | 2.5 | 1 |
7 | 5 | 10 | 1 | 11 | 2.5 | 1.8 |
8 | 5 | 60 | 3.5 | 2 | 1.5 | 1.9 |
9 | 9 | 35 | 3.5 | 20 | 1.8 | 2 |
10 | 5 | 60 | 1 | 11 | 2.2 | 2.2 |
11 | 5 | 35 | 1 | 2 | 2.3 | 2.5 |
12 | 5 | 10 | 3.5 | 20 | 1.6 | 2.5 |
13 | 9 | 35 | 3.5 | 2 | 1.2 | 1.5 |
14 | 1 | 35 | 3.5 | 20 | 1.1 | 1.8 |
15 | 5 | 35 | 3.5 | 11 | 2 | 2.2 |
16 | 5 | 35 | 3.5 | 11 | 2 | 2.3 |
17 | 5 | 35 | 6 | 2 | 2 | 1.6 |
18 | 1 | 60 | 3.5 | 11 | 2.5 | 1.2 |
19 | 5 | 35 | 1 | 20 | 2.2 | 1.1 |
20 | 9 | 35 | 1 | 11 | 2 | 2 |
21 | 5 | 35 | 3.5 | 11 | 1.9 | 2 |
22 | 9 | 10 | 3.5 | 11 | 1.9 | 2 |
23 | 5 | 60 | 6 | 11 | 2.3 | 2.5 |
24 | 5 | 10 | 3.5 | 2 | 2.4 | 2.2 |
25 | 1 | 35 | 1 | 11 | 2 | 2 |
26 | 5 | 35 | 6 | 20 | 2 | 1.9 |
27 | 1 | 35 | 3.5 | 2 | 2.5 | 1.9 |
28 | 5 | 35 | 3.5 | 11 | 2.5 | 2.3 |
29 | 9 | 60 | 3.5 | 11 | 2 | 2.4 |
30 | 9 | 35 | 6 | 11 | 2.5 | 2 |
Sample | Substrate | Method | Linear Range (μM) | Detection Limit (μM) | References |
---|---|---|---|---|---|
PEDOT-Gr | Resorcinol | Electrochemical | 6–200 μM | 0.16 μM | [47] |
P-TiO2 NPs | Resorcinol | Fluorescent | 0.5–100 μM | 0.092 μM | [48] |
SWCNT/GCE | Resorcinol | Voltammetery | 5–80 μM | 1.0 μM | [49] |
GCE | Resorcinol | Electrochemical | 1–300 μM | 0.75 μM | [50] |
H-4 NC | Catechol | Colorimetric | 0.1–0.8 mM | 0.2 mM | Present work |
H-4 NC | Resorcinol | Colorimetric | 0.01–0.08 mM | 0.03 mM | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, H.; Kaur, M.; Aggarwal, R.; Sharma, S.; Singh, D. Nanocomposite of MgFe2O4 and Mn3O4 as Polyphenol Oxidase Mimic for Sensing of Polyphenols. Biosensors 2022, 12, 428. https://doi.org/10.3390/bios12060428
Kaur H, Kaur M, Aggarwal R, Sharma S, Singh D. Nanocomposite of MgFe2O4 and Mn3O4 as Polyphenol Oxidase Mimic for Sensing of Polyphenols. Biosensors. 2022; 12(6):428. https://doi.org/10.3390/bios12060428
Chicago/Turabian StyleKaur, Harmilan, Manpreet Kaur, Renuka Aggarwal, Sucheta Sharma, and Davinder Singh. 2022. "Nanocomposite of MgFe2O4 and Mn3O4 as Polyphenol Oxidase Mimic for Sensing of Polyphenols" Biosensors 12, no. 6: 428. https://doi.org/10.3390/bios12060428
APA StyleKaur, H., Kaur, M., Aggarwal, R., Sharma, S., & Singh, D. (2022). Nanocomposite of MgFe2O4 and Mn3O4 as Polyphenol Oxidase Mimic for Sensing of Polyphenols. Biosensors, 12(6), 428. https://doi.org/10.3390/bios12060428