Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review
Abstract
:1. Introduction
2. SARS-CoV-2 Diagnostic Tests Advantages and Challenges
Detection Method | Target | Laboratory or Point-of-Care (POC) | Quantitative | Advantages | Cost of Testing | Drawbacks |
---|---|---|---|---|---|---|
CT scan | Chest | Laboratory | No | High sensitivity | High | Lack of specificity Require sophisticated and expensive machines Need trained personnel to interpret the results Exposed to the radiation |
RT-PCR | Nucleic acid | Laboratory | Semi-quantitative | Highly specific and sensitive Suitable for early infection Can detect the viral particles that cannot be cultured by cell culture method | High | Require sample preparation and purification Need specific reagents Require sophisticated and expensive machines Need skilled personnel Chances of false results are higher for mixed infection cases Longer analysis time (~50 min to 4 h) Not suitable for mass population Not suitable for large scale screening for multiple samples |
ELISA | Antigen Antibody | Laboratory | Semi-quantitative | Suitable for monitoring the immune response Suitable for sero-surveillance | High | Require sample preparation and purification Low specificity High risk of cross-reactivity Longer analysis time (~2 to 5 h) Not suitable for large scale screening for multiple samples |
Electrochemical biosensor | Any analyte depending on the biorecognition element | POC | Yes | Rapid response time (~10 s to 1 h) Highly specific No need complex reagents and sample preparation Miniaturization capability | Low | Sample matrixes affect the sensitivity of assay Low stability |
3. SARS-CoV-2 Electrochemical Biosensors
3.1. Transducer (Working Electrode) and Electrochemical Transducing Methods
3.2. Biorecognition Molecules Used for Fabrication of SARS-CoV-2 Electrochemical Biosensor
3.2.1. Electrochemical Immunosensor
3.2.2. Electrochemical DNA Sensor
4. The Advanced Electrochemical Sensing Technologies for Point-of-Care (POC) Detection of SARS-CoV-2
4.1. Nanomaterials as the Surface Modifier on the Miniaturized Electrochemical Sensor
4.2. Microfluidic Chip
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The Socio-Economic Implications of the Coronavirus Pandemic (COVID-19): A Review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Naserghandi, A.; Allameh, S.F.; Saffarpour, R. All about COVID-19 in Brief. New Microbes New Infect. 2020, 35, 100678. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, P. COVID-19 Pulmonary Involvement: Is Really an Interstitial Pneumonia? Acad. Radiol. 2020, 27, 900. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.C.; Chang, Y.-F.; Chen, K.-H.; Su, L.-C.; Lee, C.-W.; Chen, C.-C.; Chen, Y.-M.A.; Chou, C. Detection of Severe Acute Respiratory Syndrome (SARS) Coronavirus Nucleocapsid Protein in Human Serum Using a Localized Surface Plasmon Coupled Fluorescence Fiber-Optic Biosensor. Biosens. Bioelectron. 2009, 25, 320–325. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wadman, M.; Couzin-Frankel, J.; Kaiser, J.; Matacic, C. A Rampage through the Body 2020. Science 2020, 368, 356–360. [Google Scholar] [CrossRef]
- Pachetti, M.; Marini, B.; Benedetti, F.; Giudici, F.; Mauro, E.; Storici, P.; Masciovecchio, C.; Angeletti, S.; Ciccozzi, M.; Gallo, R.C. Emerging SARS-CoV-2 Mutation Hot Spots Include a Novel RNA-Dependent-RNA Polymerase Variant. J. Transl. Med. 2020, 18, 179. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.W.; Tambyah, P.A.; Hui, D.S.C. Emergence of a Novel Coronavirus Causing Respiratory Illness from Wuhan, China. J. Infect. 2020, 80, 350. [Google Scholar] [CrossRef]
- Kelly-Cirino, C.D.; Nkengasong, J.; Kettler, H.; Tongio, I.; Gay-Andrieu, F.; Escadafal, C.; Piot, P.; Peeling, R.W.; Gadde, R.; Boehme, C. Importance of Diagnostics in Epidemic and Pandemic Preparedness. BMJ Glob. Health 2019, 4, e001179. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, C.; Scognamiglio, T.; Odone, A. COVID-19 in Italy: Impact of Containment Measures and Prevalence Estimates of Infection in the General Population. Acta Biol. Med. Atenei Parm. 2020, 91, 175. [Google Scholar]
- Chathappady House, N.N.; Palissery, S.; Sebastian, H. Corona Viruses: A Review on SARS, MERS and COVID-19. Microbiol. Insights 2021, 14, 11786361211002480. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; et al. Clinical and Immunological Assessment of Asymptomatic SARS-CoV-2 Infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Bedford, J.; Enria, D.; Giesecke, J.; Heymann, D.L.; Ihekweazu, C.; Kobinger, G.; Lane, H.C.; Memish, Z.; Oh, M.; Schuchat, A. COVID-19: Towards Controlling of a Pandemic. Lancet 2020, 395, 1015–1018. [Google Scholar] [CrossRef]
- Perkins, M.D.; Dye, C.; Balasegaram, M.; Bréchot, C.; Mombouli, J.-V.; Røttingen, J.-A.; Tanner, M.; Boehme, C.C. Diagnostic Preparedness for Infectious Disease Outbreaks. Lancet 2017, 390, 2211–2214. [Google Scholar] [CrossRef] [Green Version]
- Ozer, T.; Geiss, B.J.; Henry, C.S. Chemical and Biological Sensors for Viral Detection. J. Electrochem. Soc. 2019, 167, 037523. [Google Scholar] [CrossRef] [Green Version]
- Sheikhzadeh, E.; Eissa, S.; Ismail, A.; Zourob, M. Diagnostic Techniques for COVID-19 and New Developments. Talanta 2020, 220, 121392. [Google Scholar] [CrossRef]
- Lan, L.; Xu, D.; Ye, G.; Xia, C.; Wang, S.; Li, Y.; Xu, H. Positive RT-PCR Test Results in Patients Recovered from COVID-19. JAMA 2020, 323, 1502–1503. [Google Scholar] [CrossRef] [Green Version]
- Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R. Assay Techniques and Test Development for COVID-19 Diagnosis 2020. ACS Cent. Sci. 2020, 6, 591–605. [Google Scholar] [CrossRef]
- Bramhachari, P.V.; Sheela, G.M.; Prathyusha, A.; Madhavi, M.; Kumar, K.S.; Reddy, N.N.R.; Berde, C.P. Advanced Immunotechnological Methods for Detection and Diagnosis of Viral Infections: Current Applications and Future Challenges. In Dynamics of Immune Activation in Viral Diseases; Springer Nature: Singapore, 2020; pp. 261–275. [Google Scholar]
- Antiochia, R. Developments in Biosensors for CoV Detection and Future Trends. Biosens. Bioelectron. 2021, 173, 112777. [Google Scholar] [CrossRef] [PubMed]
- Kudr, J.; Michalek, P.; Ilieva, L.; Adam, V.; Zitka, O. COVID-19: A Challenge for Electrochemical Biosensors. Trends Anal. Chem. 2021, 136, 116192. [Google Scholar] [CrossRef] [PubMed]
- Imran, S.; Ahmadi, S.; Kerman, K. Electrochemical Biosensors for the Detection of SARS-CoV-2 and Other Viruses. Micromachines 2021, 12, 174. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Xu, J.; Liu, J.; Wang, X.; Chen, B. Disease-Related Detection with Electrochemical Biosensors: A Review. Sensors 2017, 17, 2375. [Google Scholar] [CrossRef]
- Kaya, H.O.; Cetin, A.E.; Azimzadeh, M.; Topkaya, S.N. Pathogen Detection with Electrochemical Biosensors: Advantages, Challenges and Future Perspectives. J. Electroanal. Chem. 2021, 882, 114989. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical Biosensors for Pathogen Detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef]
- Bukkitgar, S.D.; Shetti, N.P.; Aminabhavi, T.M. Electrochemical Investigations for COVID-19 Detection-A Comparison with Other Viral Detection Methods. Chem. Eng. J. 2020, 420 Pt 2, 127575. [Google Scholar] [CrossRef]
- Mortari, A.; Lorenzelli, L. Recent Sensing Technologies for Pathogen Detection in Milk: A Review. Biosens. Bioelectron. 2014, 60, 8–21. [Google Scholar] [CrossRef]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of Electrochemical Immunosensors for Early Clinical Diagnostics. Talanta 2015, 132, 162–174. [Google Scholar] [CrossRef]
- Xu, L.; Shoaei, N.; Jahanpeyma, F.; Zhao, J.; Azimzadeh, M.; Al, K.T. Optical, Electrochemical and Electrical (Nano) Biosensors for Detection of Exosomes: A Comprehensive Overview. Biosens. Bioelectron. 2020, 161, 112222. [Google Scholar] [CrossRef] [PubMed]
- Topkaya, S.N.; Azimzadeh, M. Biosensors of in Vitro Detection of Cancer and Bacterial Cells. In Nanobiosensors for Personalized and Onsite Biomedical Diagnosis; Chandra, P., Ed.; Institution of Engineering and Technology: Lucknow, India, 2016; pp. 73–94. [Google Scholar]
- Amiri, M.; Bezaatpour, A.; Jafari, H.; Boukherroub, R.; Szunerits, S. Electrochemical Methodologies for the Detection of Pathogens. ACS Sens. 2018, 3, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- McEachern, F.; Harvey, E.; Merle, G. Emerging Technologies for the Electrochemical Detection of Bacteria. Biotechnol. J. 2020, 15, 2000140. [Google Scholar] [CrossRef]
- Yu, M.; Xu, D.; Lan, L.; Tu, M.; Liao, R.; Cai, S.; Cao, Y.; Xu, L.; Liao, M.; Zhang, X. Thin-Section Chest CT Imaging of COVID-19 Pneumonia: A Comparison between Patients with Mild and Severe Disease. Radiol. Cardiothorac. Imaging 2020, 2, e200126. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhong, Z.; Xie, X.; Yu, Q.; Liu, J. Relation between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am. J. Roentgenol. 2020, 214, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Parekh, M.; Donuru, A.; Balasubramanya, R.; Kapur, S. Review of the Chest CT Differential Diagnosis of Ground-Glass Opacities in the COVID Era. Radiology 2020, 297, E289–E302. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020, 296, E41–E45. [Google Scholar] [CrossRef] [Green Version]
- Soriano Aguadero, I.; Ezponda Casajús, A.; Mendoza Ferradas, F.; Igual Rouilleault, A.; Paternain Nuin, A.; Pueyo Villoslada, J.; Bastarrika, G. Chest Computed Tomography Findings in Different Phases of SARS-CoV-2 Infection. Radiologia 2021, 63, 218–227. [Google Scholar] [CrossRef]
- Aziz, A.; Asif, M.; Ashraf, G.; Farooq, U.; Yang, Q.; Wang, S. Trends in Biosensing Platforms for SARS-CoV-2 Detection: A Critical Appraisal against Standard Detection Tools. Curr. Opin. Colloid Interface Sci. 2021, 52, 101418. [Google Scholar] [CrossRef]
- Ashraf, G.; Aziz, A.; Qaisrani, R.N.; Chen, W.; Asif, M. Detecting and Inactivating Severe Acute Respiratory Syndrome Coronavirus-2 under the Auspices of Electrochemistry. Curr. Res. Chem. Biol. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Mobed, A.; Shafigh, E.S. Biosensors Promising Bio-Device for Pandemic Screening “COVID-19 ”. Microchem. J. 2021, 164, 106094. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L. Detection of 2019 Novel Coronavirus (2019-NCoV) by Real-Time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Li, Y.; Liu, J.; Guo, L.; Wang, Z.; Xu, X.; Song, S.; Hao, C.; Liu, L.; Xin, M. Rapid, Ultrasensitive and Highly Specific Biosensor for the Diagnosis of SARS-CoV-2 in Clinical Blood Samples. Mater. Chem. Front. 2020, 4, 2000–2005. [Google Scholar] [CrossRef]
- Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 3822–3835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Anwar, T.B.; Mulchandani, A. Current Status, Advances, Challenges and Perspectives on Biosensors for COVID-19 Diagnosis in Resource-Limited Settings. Sens. Actuators Rep. 2021, 3, 100025. [Google Scholar] [CrossRef]
- Zhang, Y.; Odiwuor, N.; Xiong, J.; Sun, L.; Nyaruaba, R.O.; Wei, H.; Tanner, N.A. Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using Colorimetric LAMP. medRxiv 2020. medRxiv:2020.02.26.20028373. [Google Scholar]
- Ghodake, G.S.; Shinde, S.K.; Kadam, A.A.; Saratale, R.G.; Saratale, G.D.; Syed, A.; Elgorban, A.M.; Marraiki, N.; Kim, D.-Y. Biological Characteristics and Biomarkers of Novel SARS-CoV-2 Facilitated Rapid Development and Implementation of Diagnostic Tools and Surveillance Measures. Biosens. Bioelectron. 2021, 177, 112969. [Google Scholar] [CrossRef]
- Rapid Diagnostics. Abbott Point of Care Testing. Available online: https://www.globalpointofcare.abbott/en/index.html (accessed on 14 June 2021).
- Zhen, W.; Smith, E.; Manji, R.; Schron, D.; Berry, G.J. Clinical Evaluation of Three Sample-to-Answer Platforms for Detection of SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00783-20. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Zinger, T.; Inglima, K.; Woo, K.M.; Atie, O.; Yurasits, L.; See, B.; Aguero-Rosenfeld, M.E. Performance of Abbott Id Now COVID-19 Rapid Nucleic Acid Amplification Test Using Nasopharyngeal Swabs Transported in Viral Transport Media and Dry Nasal Swabs in a New York City Academic Institution. J. Clin. Microbiol. 2020, 58, e01136-20. [Google Scholar] [CrossRef]
- Mahshid, S.S.; Flynn, S.E.; Mahshid, S. The Potential Application of Electrochemical Biosensors in the COVID-19 Pandemic: A Perspective on the Rapid Diagnostics of SARS-CoV-2. Biosens. Bioelectron. 2021, 176, 112905. [Google Scholar] [CrossRef]
- Parihar, A.; Ranjan, P.; Sanghi, S.K.; Srivastava, A.K.; Khan, R. Point-of-Care Biosensor-Based Diagnosis of COVID-19 Holds Promise to Combat Current and Future Pandemics. ACS Appl. Biol. Mater. 2020, 3, 7326–7343. [Google Scholar] [CrossRef] [PubMed]
- Rasmi, Y.; Li, X.; Khan, J.; Ozer, T.; Choi, J.R. Emerging Point-of-Care Biosensors for Rapid Diagnosis of COVID-19: Current Progress, Challenges, and Future Prospects. Anal. Bioanal. Chem. 2021, 413, 4137–4159. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 Serological Tests: How Well Do They Actually Perform? Diagnostics 2020, 10, 453. [Google Scholar] [CrossRef]
- Kwee, T.C.; Kwee, R.M. Chest CT in COVID-19: What the Radiologist Needs to Know. RadioGraphics 2020, 40, 1848–1865. [Google Scholar] [CrossRef] [PubMed]
- Nadoushan, M.J.; Ahmadi, S.; Nadoushan, P.J. Serology Testing for SARS-CoV-2: Benefits and Challenges. Iran. J. Pathol. 2020, 15, 154. [Google Scholar] [CrossRef] [PubMed]
- Alhajj, M.; Farhana, A. Enzyme Linked Immunosorbent Assay. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555922/ (accessed on 21 May 2022).
- Lin, A.V. Direct ELISA. In ELISA; Springer: Berlin/Heidelberg, Germany, 2015; pp. 61–67. [Google Scholar]
- Garg, M.; Sharma, A.L.; Singh, S. Advancement in Biosensors for Inflammatory Biomarkers of SARS-CoV-2 during 2019–2020. Biosens. Bioelectron. 2020, 171, 112703. [Google Scholar] [CrossRef]
- Infantino, M.; Damiani, A.; Gobbi, F.L.; Grossi, V.; Lari, B.; Macchia, D.; Casprini, P.; Veneziani, F.; Villalta, D.; Bizzaro, N. Serological Assays for SARS-CoV-2 Infectious Disease: Benefits, Limitations and Perspectives. Isr. Med. Assoc. J. 2020, 22, 203–210. [Google Scholar]
- Younes, N.; Al-Sadeq, D.W.; Al-Jighefee, H.; Younes, S.; Al-Jamal, O.; Daas, H.I.; Yassine, H.; Nasrallah, G.K. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses 2020, 12, 582. [Google Scholar] [CrossRef]
- Sidiq, Z.; Hanif, M.; KumarDwivedi, K.; Chopra, K.K. Benefits and Limitations of Serological Assays in COVID-19 Infection. Indian J. Tuberc. 2020, 67, S163–S166. [Google Scholar] [CrossRef]
- Kosack, C.S.; Page, A.-L.; Klatser, P.R. A Guide to Aid the Selection of Diagnostic Tests. Bull. World Health Organ. 2017, 95, 639. [Google Scholar] [CrossRef]
- Tripathy, S.; Singh, S.G. Label-Free Electrochemical Detection of DNA Hybridization: A Method for COVID-19 Diagnosis. Trans. Indian Natl. Acad. Eng. 2020, 5, 205–209. [Google Scholar] [CrossRef]
- De Eguilaz, M.R.; Cumba, L.R.; Forster, R.J. Electrochemical Detection of Viruses and Antibodies: A Mini Review. Electrochem. Commun. 2020, 116, 106762. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Adornetto, G.; Palleschi, G. A Review of Experimental Aspects of Electrochemical Immunosensors. Electrochim. Acta 2012, 84, 74–83. [Google Scholar] [CrossRef]
- Bukkitgar, S.D.; Shetti, N.P. Electrochemical Behavior of an Anticancer Drug 5-Fluorouracil at Methylene Blue Modified Carbon Paste Electrode. Mater. Sci. Eng. C 2016, 65, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Bukkitgar, S.D.; Shetti, N.P.; Reddy, K.R.; Saleh, T.A.; Aminabhavi, T.M. Ultrasonication and Electrochemically-Assisted Synthesis of Reduced Graphene Oxide Nanosheets for Electrochemical Sensor Applications. FlatChem 2020, 23, 100183. [Google Scholar] [CrossRef]
- Soler, M.; Huertas, C.S.; Lechuga, L.M. Label-Free Plasmonic Biosensors for Point-of-Care Diagnostics: A Review. Expert Rev. Mol. Diagn. 2019, 19, 71–81. [Google Scholar] [CrossRef]
- Zheng, J.; Shi, H.; Wang, M.; Duan, C.; Huang, Y.; Li, C.; Xiang, Y.; Li, G. Homogenous Electrochemical Method for Ultrasensitive Detection of Tumor Cells Designed by Introduction of Poly (A) Tails onto Cell Membranes. Anal. Chem. 2019, 92, 2194–2200. [Google Scholar] [CrossRef]
- Silva, N.F.D.; Magalhães, J.M.C.S.; Freire, C.; Delerue-Matos, C. Electrochemical Biosensors for Salmonella: State of the Art and Challenges in Food Safety Assessment. Biosens. Bioelectron. 2018, 99, 667–682. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Huang, C.; Huang, Z.; Lin, F.; He, Q.; Tao, D.; Jaffrezic-Renault, N.; Guo, Z. Advancements in Electrochemical Biosensing for Respiratory Virus Detection: A Review. Trends Anal. Chem. 2021, 139, 116253. [Google Scholar] [CrossRef]
- Goud, K.Y.; Reddy, K.K.; Khorshed, A.; Kumar, V.S.; Mishra, R.K.; Oraby, M.; Ibrahim, A.H.; Kim, H.; Gobi, K.V. Electrochemical Diagnostics of Infectious Viral Diseases: Trends and Challenges. Biosens. Bioelectron. 2021, 180, 113112. [Google Scholar] [CrossRef]
- Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M.T. Advantages and Challenges of Microfluidic Cell Culture in Polydimethylsiloxane Devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasouli, E.; Shahnavaz, Z.; Basirun, W.J.; Rezayi, M.; Avan, A.; Ghayour-Mobarhan, M.; Khandanlou, R.; Johan, M.R. Advancements in Electrochemical DNA Sensor for Detection of Human Papilloma Virus-A Review. Anal. Biochem. 2018, 556, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Taha, B.A.; al Mashhadany, Y.; Hafiz Mokhtar, M.H.; Dzulkefly Bin Zan, M.S.; Arsad, N. An Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application. Sensors 2020, 20, 6764. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Hasan, M.R.; Hossain, S.I.; Ahommed, M.S.; Daizy, M. Ultrasensitive Detection of Pathogenic Viruses with Electrochemical Biosensor: State of the Art. Biosens. Bioelectron. 2020, 166, 112431. [Google Scholar] [CrossRef] [PubMed]
- Anusha, J.R.; Kim, B.C.; Yu, K.-H.; Raj, C.J. Electrochemical Biosensing of Mosquito-Borne Viral Disease, Dengue: A Review. Biosens. Bioelectron. 2019, 142, 111511. [Google Scholar] [CrossRef]
- Kaushik, A.; Tiwari, S.; Jayant, R.D.; Vashist, A.; Nikkhah-Moshaie, R.; El-Hage, N.; Nair, M. Electrochemical Biosensors for Early Stage Zika Diagnostics. Trends Biotechnol. 2017, 35, 308–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotru, S.; Klimuntowski, M.; Ridha, H.; Uddin, Z.; Askhar, A.A.; Singh, G.; Howlader, M.M.R. Electrochemical Sensing: A Prognostic Tool in the Fight against COVID-19. Trends Anal. Chem. 2021, 136, 116198. [Google Scholar] [CrossRef]
- Zaccari, I.; Davies, A.G.; Walti, C.; Laurenson, S.X. Label-Free Electrochemical Biosensors for Clinical Diagnostic. In Proceedings of the 2014 Cairo International Biomedical Engineering Conference (CIBEC), Giza, Egypt, 11–13 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 15–18. [Google Scholar]
- Koyappayil, A.; Lee, M.-H. Ultrasensitive Materials for Electrochemical Biosensor Labels. Sensors 2021, 21, 89. [Google Scholar] [CrossRef]
- Khristunova, E.; Dorozhko, E.; Korotkova, E.; Kratochvil, B.; Vyskocil, V.; Barek, J. Label-Free Electrochemical Biosensors for the Determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis. Sensors 2020, 20, 4600. [Google Scholar] [CrossRef]
- Andryukov, B.G.; Besednova, N.N.; Romashko, R.V.; Zaporozhets, T.S.; Efimov, T.A. Label-Free Biosensors for Laboratory-Based Diagnostics of Infections: Current Achievements and New Trends. Biosensors 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.C.; Wang, E.; Tai, C.S.; Chiu, Y.C.; Li, C.W.; Lin, Y.R.; Lee, T.H.; Huang, C.W.; Chen, J.C.; Chen, W.L. Improving the Reproducibility, Accuracy, and Stability of an Electrochemical Biosensor Platform for Point-of-Care Use. Biosens. Bioelectron. 2020, 155, 112111. [Google Scholar] [CrossRef] [PubMed]
- Blair, E.O.; Corrigan, D.K. A Review of Microfabricated Electrochemical Biosensors for DNA Detection. Biosens. Bioelectron. 2019, 134, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahari, S.; Roberts, A.; Shahdeo, D.; Gandhi, S. ECovSens-Ultrasensitive Novel in-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of NCovid-19 Antigen, a Spike Protein Domain 1 of SARS-CoV-2. bioRxiv 2020. bioRxiv:2020.04.24.059204. [Google Scholar]
- Beduk, T.; Beduk, D.; de Oliveira Filho, J.I.; Zihnioglu, F.; Cicek, C.; Sertoz, R.; Arda, B.; Goksel, T.; Turhan, K.; Salama, K.N. Rapid Point-of-Care COVID-19 Diagnosis with a Gold-Nanoarchitecture-Assisted Laser-Scribed Graphene Biosensor. Anal. Chem. 2021, 93, 8585–8594. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.-H.; Choi, M.; Ku, K.B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H.G. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, Z.; Roushani, M.; Hosseini, H.; Choobin, H. Electrochemical Immunosensor with Cu 2 O Nanocube Coating for Detection of SARS-CoV-2 Spike Protein. Microchim. Acta 2021, 188, 105. [Google Scholar] [CrossRef]
- Mojsoska, B.; Larsen, S.; Olsen, D.A.; Madsen, J.S.; Brandslund, I.; Alatraktchi, F.A. Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor. Sensors 2021, 21, 390. [Google Scholar] [CrossRef] [PubMed]
- De Lima, L.F.; Ferreira, A.L.; Torres, M.D.T.; de Araujo, W.R.; de la Fuente-Nunez, C. Minute-Scale Detection of SARS-CoV-2 Using a Low-Cost Biosensor Composed of Pencil Graphite Electrodes. Proc. Natl. Acad. Sci. USA 2021, 118, e2106724118. [Google Scholar] [CrossRef]
- Idili, A.; Parolo, C.; Alvarez-Diduk, R.; Merkoçi, A. Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. ACS Sens. 2021, 6, 3093–3101. [Google Scholar] [CrossRef]
- Liv, L. Electrochemical Immunosensor Platform Based on Gold-Clusters, Cysteamine and Glutaraldehyde Modified Electrode for Diagnosing COVID-19. Microchem. J. 2021, 168, 106445. [Google Scholar] [CrossRef]
- Zaccariotto, G.C.; Silva, M.K.L.; Rocha, G.S.; Cesarino, I. A Novel Method for the Detection of SARS-CoV-2 Based on Graphene-Impedimetric Immunosensor. Materials 2021, 14, 4230. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.T.; de Araujo, W.R.; de Lima, L.F.; Ferreira, A.L.; de la Fuente-Nunez, C. Low-Cost Biosensor for Rapid Detection of SARS-CoV-2 at the Point of Care. Matter 2021, 4, 2403–2416. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, M.A.; Khan, S.A.; Rehman, A. Screen-Printed Graphene/Carbon Electrodes on Paper Substrates as Impedance Sensors for Detection of Coronavirus in Nasopharyngeal Fluid Samples. Diagnostics 2021, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Mahmud, A.; Chang, D.; Das, J.; Gomis, S.; Chen, J.B.; Wang, H.; Been, T.; Yip, L.; Coomes, E. Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing. J. Am. Chem. Soc. 2021, 143, 1722–1727. [Google Scholar] [CrossRef]
- Rashed, M.Z.; Kopechek, J.A.; Priddy, M.C.; Hamorsky, K.T.; Palmer, K.E.; Mittal, N.; Valdez, J.; Flynn, J.; Williams, S.J. Rapid Detection of SARS-CoV-2 Antibodies Using Electrochemical Impedance-Based Detector. Biosens. Bioelectron. 2021, 171, 112709. [Google Scholar] [CrossRef]
- Vadlamani, B.S.; Uppal, T.; Verma, S.C.; Misra, M. Functionalized TiO2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Sensors 2020, 20, 5871. [Google Scholar] [CrossRef]
- Ali, M.A.; Hu, C.; Jahan, S.; Yuan, B.; Saleh, M.S.; Ju, E.; Gao, S.; Panat, R. Sensing of COVID-19 Antibodies in Seconds via Aerosol Jet Nanoprinted Reduced-Graphene-Oxide-Coated 3D Electrodes. Adv. Mater. 2021, 33, 2006647. [Google Scholar] [CrossRef]
- Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Based Electrochemical Biosensor for Diagnosing COVID-19: Detection of SARS-CoV-2 Antibodies and Antigen. Biosens. Bioelectron. 2021, 176, 112912. [Google Scholar] [CrossRef]
- Li, X.; Qin, Z.; Fu, H.; Li, T.; Peng, R.; Li, Z.; Rini, J.M.; Liu, X. Enhancing the Performance of Paper-Based Electrochemical Impedance Spectroscopy Nanobiosensors: An Experimental Approach. Biosens. Bioelectron. 2021, 177, 112672. [Google Scholar] [CrossRef]
- Abrego-Martinez, J.C.; Jafari, M.; Chergui, S.; Pavel, C.; Che, D.; Siaj, M. Aptamer-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2: Nanoscale Electrode-Aptamer-SARS-CoV-2 Imaging by Photo-Induced Force Microscopy. Biosens. Bioelectron. 2022, 195, 113595. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Behbahan, N.G.G.; Bahrani, S.; Mousavi, S.M.; Gholami, A.; Ramakrishna, S.; Firoozsani, M.; Moghadami, M.; Lankarani, K.B.; Omidifar, N. Ultra-Sensitive Viral Glycoprotein Detection NanoSystem toward Accurate Tracing SARS-CoV-2 in Biological/Non-Biological Media. Biosens. Bioelectron. 2021, 171, 112731. [Google Scholar] [CrossRef] [PubMed]
- Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano 2020, 14, 17028–17045. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Zourob, M. Development of a Low-Cost Cotton-Tipped Electrochemical Immunosensor for the Detection of SARS-CoV-2. Anal. Chem. 2020, 93, 1826–1833. [Google Scholar] [CrossRef] [PubMed]
- Avelino, K.Y.P.S.; dos Santos, G.S.; Frías, I.A.M.; da Silva Júnior, A.G.; Pereira, M.C.; Pitta, M.G.R.; de Araújo, B.C.; Errachid, A.; Oliveira, M.D.L.; Andrade, C.A.S. Nanostructured Sensor Platform Based on Organic Polymer Conjugated to Metallic Nanoparticle for the Impedimetric Detection of SARS-CoV-2 at Various Stages of Viral Infection. J. Pharm. Biomed. Anal. 2021, 206, 114392. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.; Nandeshwar, R.; Lad, S.B.; Megha, K.; Mangat, M.; Butterworth, A.; Knapp, C.W.; Knapp, M.; Hoskisson, P.A.; Corrigan, D.K. Electrochemical Sensing of SARS-CoV-2 Amplicons with PCB Electrodes. Sens. Actuators B Chem. 2021, 343, 130169. [Google Scholar] [CrossRef]
- Chaibun, T.; Puenpa, J.; Ngamdee, T.; Boonapatcharoen, N.; Athamanolap, P.; O’Mullane, A.P.; Vongpunsawad, S.; Poovorawan, Y.; Lee, S.Y.; Lertanantawong, B. Rapid Electrochemical Detection of Coronavirus SARS-CoV-2. Nat. Commun. 2021, 12, 802. [Google Scholar] [CrossRef]
- Fabiani, L.; Saroglia, M.; Galatà, G.; de Santis, R.; Fillo, S.; Luca, V.; Faggioni, G.; D’Amore, N.; Regalbuto, E.; Salvatori, P. Magnetic Beads Combined with Carbon Black-Based Screen-Printed Electrodes for COVID-19: A Reliable and Miniaturized Electrochemical Immunosensor for SARS-CoV-2 Detection in Saliva. Biosens. Bioelectron. 2021, 171, 112686. [Google Scholar] [CrossRef]
- Balaji, A.; Maurya, S.; Kumar, S. Smartphone-Based Electrochemical Sensor for Assessing COVID-19 Infected Patients. Int. J. Pervasive Comput. Commun. 2020; ahead of print. [Google Scholar]
- Zhao, H.; Liu, F.; Xie, W.; Zhou, T.-C.; OuYang, J.; Jin, L.; Li, H.; Zhao, C.-Y.; Zhang, L.; Wei, J.; et al. Ultrasensitive Supersandwich-Type Electrochemical Sensor for SARS-CoV-2 from the Infected COVID-19 Patients Using a Smartphone. Sens. Actuators B Chem. 2021, 327, 128899. [Google Scholar] [CrossRef]
- Miripour, Z.S.; Sarrami-Forooshani, R.; Sanati, H.; Makarem, J.; Taheri, M.S.; Shojaeian, F.; Eskafi, A.H.; Abbasvandi, F.; Namdar, N.; Ghafari, H. Real-Time Diagnosis of Reactive Oxygen Species (ROS) in Fresh Sputum by Electrochemical Tracing; Correlation between COVID-19 and Viral-Induced ROS in Lung/Respiratory Epithelium during This Pandemic. Biosens. Bioelectron. 2020, 165, 112435. [Google Scholar] [CrossRef]
- Guo, K.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A.A.; Nazir Ahmad, A.; Alhamlan, F.S.; McCulloch, I. A Nanobody-Functionalized Organic Electrochemical Transistor for the Rapid Detection of SARS-CoV-2 or MERS Antigens at the Physical Limit. medRxiv 2020. medRxiv:2020.11.12.20228874. [Google Scholar]
- Torrente-Rodríguez, R.M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H.B.; Gao, W. SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter 2020, 3, 1981–1998. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Pan, Y.; Sun, Z.; Li, J.; Yi, Y.; Yang, J.; Li, G. An Electrochemical Biosensor for Sensitive Analysis of the SARS-CoV-2 RNA. Biosens. Bioelectron. 2021, 186, 113309. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Malode, S.J.; Bukkitgar, S.D.; Bagihalli, G.B.; Kulkarni, R.M.; Pujari, S.B.; Reddy, K.R. Electro-Oxidation and Determination of Nimesulide at Nanosilica Modified Sensor. Mater. Sci. Energy Technol. 2019, 2, 396–400. [Google Scholar] [CrossRef]
- Rahman, M.; Li, X.-B.; Lopa, N.S.; Ahn, S.J.; Lee, J.-J. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers. Sensors 2015, 15, 3801–3829. [Google Scholar] [CrossRef] [Green Version]
- Chaubey, A.; Malhotra, B. Mediated Biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef]
- Silva, M.M.S.; Dias, A.; Cordeiro, M.T.; Marques, E., Jr.; Goulart, M.O.F.; Dutra, R.F. A Thiophene-Modified Screen Printed Electrode for Detection of Dengue Virus NS1 Protein. Talanta 2014, 128, 505–510. [Google Scholar] [CrossRef]
- Leva-Bueno, J.; Peyman, S.A.; Millner, P.A. A Review on Impedimetric Immunosensors for Pathogen and Biomarker Detection. Med. Microbiol. Immunol. 2020, 209, 343–362. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Shah, B. Electrochemical Sensing and Biosensing Based on Square Wave Voltammetry. Anal. Methods 2013, 5, 2158–2173. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Aqmar, N.Z.N.; Abdullah, W.F.H.; Zain, Z.M.; Rani, S. Embedded 32-Bit Differential Pulse Voltammetry (DPV) Technique for 3-Electrode Cell Sensing. IOP Conf. Ser. Mater. Sci. Eng. 2018, 340, 012016. [Google Scholar]
- Cobb, S.J.; Macpherson, J.V. Enhancing Square Wave Voltammetry Measurements via Electrochemical Analysis of the Non-Faradaic Potential Window. Anal. Chem. 2019, 91, 7935–7942. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.K.; Bandal, H.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Jayaramudu, T.; Amalraj, J.; Kim, H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Adv. Sci. 2020, 7, 1902980. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.P.F. Biosensors: Sense and Sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orooji, Y.; Sohrabi, H.; Hemmat, N.; Oroojalian, F.; Baradaran, B.; Mokhtarzadeh, A.; Mohaghegh, M.; Karimi-Maleh, H. An Overview on SARS-CoV-2 (COVID-19) and Other Human Coronaviruses and Their Detection Capability via Amplification Assay, Chemical Sensing, Biosensing, Immunosensing, and Clinical Assays. Nano-Micro Lett. 2021, 13, 18. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, Y.; Jiang, X. Antibody and Antibody Fragments for Cancer Immunotherapy. J. Control. Release 2020, 328, 395–406. [Google Scholar] [CrossRef]
- Tzouvadaki, I.; Zapatero-Rodríguez, J.; Naus, S.; de Micheli, G.; O’Kennedy, R.; Carrara, S. Memristive Biosensors Based on Full-Size Antibodies and Antibody Fragments. Sens. Actuators B Chem. 2019, 286, 346–352. [Google Scholar] [CrossRef]
- Tsumoto, K.; Shinoki, K.; Kondo, H.; Uchikawa, M.; Juji, T.; Kumagai, I. Highly Efficient Recovery of Functional Single-Chain Fv Fragments from Inclusion Bodies Overexpressed in Escherichia Coli by Controlled Introduction of Oxidizing Reagent—Application to a Human Single-Chain Fv Fragment. J. Immunol. Methods 1998, 219, 119–129. [Google Scholar] [CrossRef]
- Tao, X.; Wang, X.; Liu, B.; Liu, J. Conjugation of Antibodies and Aptamers on Nanozymes for Developing Biosensors. Biosens. Bioelectron. 2020, 168, 112537. [Google Scholar] [CrossRef]
- Haji-Hashemi, H.; Norouzi, P.; Safarnejad, M.R.; Ganjali, M.R. Label-Free Electrochemical Immunosensor for Direct Detection of Citrus Tristeza Virus Using Modified Gold Electrode. Sens. Actuators B Chem. 2017, 244, 211–216. [Google Scholar] [CrossRef]
- Ishikawa, F.N.; Chang, H.-K.; Curreli, M.; Liao, H.-I.; Olson, C.A.; Chen, P.-C.; Zhang, R.; Roberts, R.W.; Sun, R.; Cote, R.J. Label-Free, Electrical Detection of the SARS Virus N-Protein with Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano 2009, 3, 1219–1224. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Astill, J.; Dara, R.A.; Fraser, E.D.G.; Sharif, S. Detecting and Predicting Emerging Disease in Poultry with the Implementation of New Technologies and Big Data: A Focus on Avian Influenza Virus. Front. Vet. Sci. 2018, 5, 263. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qin, P.; Gao, H.; Li, G.; Jiao, K. Electrochemical DNA Biosensor Based on Chitosan/Nano-V2O5/MWCNTs Composite Film Modified Carbon Ionic Liquid Electrode and Its Application to the LAMP Product of Yersinia Enterocolitica Gene Sequence. Biosens. Bioelectron. 2010, 25, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lei, Y.; Zhong, G.-X.; Zheng, Y.-J.; Sun, Z.-L.; Peng, H.-P.; Chen, W.; Liu, A.-L.; Chen, Y.-Z.; Lin, X.-H. Dual-Probe Electrochemical DNA Biosensor Based on the “Y” Junction Structure and Restriction Endonuclease Assisted Cyclic Enzymatic Amplification for Detection of Double-Strand DNA of PML/RARα Related Fusion Gene. Biosens. Bioelectron. 2015, 71, 463–469. [Google Scholar] [CrossRef]
- Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. Biosensors 2019, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zheng, D.; Qiu, W.; Gao, F.; Jiang, S.; Wang, Q. An Ultrasensitive DNA Biosensor Based on Covalent Immobilization of Probe DNA on Fern Leaf-like α-Fe2O3 and Chitosan Hybrid Film Using Terephthalaldehyde as Arm-Linker. Biosens. Bioelectron. 2015, 72, 175–181. [Google Scholar] [CrossRef]
- Ulianas, A.; Heng, L.Y.; Hanifah, S.A.; Ling, T.L. An Electrochemical DNA Microbiosensor Based on Succinimide-Modified Acrylic Microspheres. Sensors 2012, 12, 5445–5460. [Google Scholar] [CrossRef] [Green Version]
- Rashid, J.I.A.; Yusof, N.A. The Strategies of DNA Immobilization and Hybridization Detection Mechanism in the Construction of Electrochemical DNA Sensor: A Review. Sens. Bio-Sens. Res. 2017, 16, 19–31. [Google Scholar] [CrossRef]
- Benvidi, A.; Firouzabadi, A.D.; Tezerjani, M.D.; Moshtaghiun, S.M.; Mazloum-Ardakani, M.; Ansarin, A. A Highly Sensitive and Selective Electrochemical DNA Biosensor to Diagnose Breast Cancer. J. Electroanal. Chem. 2015, 750, 57–64. [Google Scholar] [CrossRef]
- Wang, J.; Shi, A.; Fang, X.; Han, X.; Zhang, Y. Ultrasensitive Electrochemical Supersandwich DNA Biosensor Using a Glassy Carbon Electrode Modified with Gold Particle-Decorated Sheets of Graphene Oxide. Microchim. Acta 2014, 181, 935–940. [Google Scholar] [CrossRef]
- Abad-Valle, P.; Fernández-Abedul, M.T.; Costa-García, A. Genosensor on Gold Films with Enzymatic Electrochemical Detection of a SARS Virus Sequence. Biosens. Bioelectron. 2005, 20, 2251–2260. [Google Scholar] [CrossRef]
- Fu, X.; Peng, F.; Lee, J.; Yang, Q.; Zhang, F.; Xiong, M.; Kong, G.; Meng, H.; Ke, G.; Zhang, X.-B. Aptamer-Functionalized DNA Nanostructures for Biological Applications. In DNA Nanotechnology; Springer: Cham, Switzerland, 2020; pp. 301–343. [Google Scholar]
- Arshavsky-Graham, S.; Urmann, K.; Salama, R.; Massad-Ivanir, N.; Walter, J.-G.; Scheper, T.; Segal, E. Aptamers vs. Antibodies as Capture Probes in Optical Porous Silicon Biosensors. Analyst 2020, 145, 4991–5003. [Google Scholar] [CrossRef] [PubMed]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Baradaran, B.; Maleki, A.; Hejazi, M.; Mokhtarzadeh, A.; de la Guardia, M. Recent Advances on Nanomaterial Based Electrochemical and Optical Aptasensors for Detection of Cancer Biomarkers. Trends Anal. Chem. 2018, 100, 103–115. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Zargami, A.; Baghban, H.N.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. Aptamer-Based Assay for Monitoring Genetic Disorder Phenylketonuria (PKU). Int. J. Biol. Macromol. 2018, 116, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Zhou, J.; Fu, R.; Cui, Y.; Zhao, Q.; Jiao, B.; He, Y. Multicolor Colorimetric Detection of Ochratoxin A via Structure-Switching Aptamer and Enzyme-Induced Metallization of Gold Nanorods. Food Chem. 2020, 320, 126607. [Google Scholar] [CrossRef]
- Wadhwa, S.; John, A.T.; Nagabooshanam, S.; Mathur, A.; Narang, J. Graphene Quantum Dot-Gold Hybrid Nanoparticles Integrated Aptasensor for Ultra-Sensitive Detection of Vitamin D3 towards Point-of-Care Application. Appl. Surf. Sci. 2020, 521, 146427. [Google Scholar] [CrossRef]
- Wang, L.; Peng, X.; Fu, H.; Huang, C.; Li, Y.; Liu, Z. Recent Advances in the Development of Electrochemical Aptasensors for Detection of Heavy Metals in Food. Biosens. Bioelectron. 2020, 147, 111777. [Google Scholar] [CrossRef]
- Xie, S.; Du, Y.; Zhang, Y.; Wang, Z.; Zhang, D.; He, L.; Qiu, L.; Jiang, J.; Tan, W. Aptamer-Based Optical Manipulation of Protein Subcellular Localization in Cells. Nat. Commun. 2020, 11, 1347. [Google Scholar] [CrossRef]
- Xiao, Y.; Lubin, A.A.; Heeger, A.J.; Plaxco, K.W. Label-free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-based Sensor. Angew. Chem. 2005, 117, 5592–5595. [Google Scholar] [CrossRef]
- Abd-Ellatief, R.; Abd-Ellatief, M.R. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics 2021, 11, 104. [Google Scholar]
- Bhardwaj, J.; Chaudhary, N.; Kim, H.; Jang, J. Subtyping of Influenza A H1N1 Virus Using a Label-Free Electrochemical Biosensor Based on the DNA Aptamer Targeting the Stem Region of HA Protein. Anal. Chim. Acta 2019, 1064, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.K.; Dhau, J.S.; Gohel, H.; Mishra, Y.K.; Kateb, B.; Kim, N.-Y.; Goswami, D.Y. Electrochemical SARS-CoV-2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management. ACS Appl. Biol. Mater. 2020, 3, 7306–7325. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2021, 8, 1537. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.R. Development of Point-of-Care Biosensors for COVID-19. Front. Chem. 2020, 8, 517. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K. Application of Nanotechnology in Food Science: Perception and Overview. Front. Microbiol. 2017, 8, 2517. [Google Scholar] [CrossRef]
- Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-Based Biosensors for Detection of Pathogenic Virus. Trends Anal. Chem. 2017, 97, 445–457. [Google Scholar] [CrossRef]
- Li, Z.; Fu, Y.; Liao, M.; Li, Y. Biosensing Methods for the Detection of Highly Pathogenic Avian Influenza H5N1 and H7N9 Viruses. Anal. Methods 2017, 9, 5238–5248. [Google Scholar] [CrossRef]
- Gowri, A.; Kumar, A.; Anand, S. Recent Advances in Nanomaterials Based Biosensors for Point of Care (PoC) Diagnosis of COVID-19-A Minireview. Trends Anal. Chem. 2021, 137, 116205. [Google Scholar] [CrossRef]
- Khristunova, E.; Barek, J.; Kratochvil, B.; Korotkova, E.; Dorozhko, E.; Vyskocil, V. Electrochemical Immunoassay for the Detection of Antibodies to Tick-Borne Encephalitis Virus by Using Various Types of Bioconjugates Based on Silver Nanoparticles. Bioelectrochemistry 2020, 135, 107576. [Google Scholar] [CrossRef]
- Sengupta, J.; Hussain, C.M. Graphene-Based Field-Effect Transistor Biosensors for the Rapid Detection and Analysis of Viruses: A Perspective in View of COVID-19. Carbon Trends 2020, 2, 100011. [Google Scholar] [CrossRef]
- Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent Advances in Cortisol Sensing Technologies for Point-of-Care Application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, R.; Luo, F.; Wang, P.; Lin, Z. Miniaturized Electrochemical Sensors and Their Point-of-Care Applications. Chin. Chem. Lett. 2020, 31, 589–600. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, N.; Li, W.; Lin, J.-M. A Membrane Separation Technique for Optimizing Sample Preparation of MALDI-TOF MS Detection. Chin. Chem. Lett. 2019, 30, 95–98. [Google Scholar] [CrossRef]
- Radi, A.-E. Electrochemical Aptamer-Based Biosensors: Recent Advances and Perspectives. Int. J. Electrochem. Sci. 2011, 2011, 863196. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, S.; Vanjari, S.R.K.; Singh, V.; Swaminathan, S.; Singh, S.G. Electrospun Manganese (III) Oxide Nanofiber Based Electrochemical DNA-Nanobiosensor for Zeptomolar Detection of Dengue Consensus Primer. Biosens. Bioelectron. 2017, 90, 378–387. [Google Scholar] [CrossRef]
- Tripathy, S.; Gangwar, R.; Supraja, P.; Rao, A.N.; Vanjari, S.R.K.; Singh, S.G. Graphene Doped Mn2O3 Nanofibers as a Facile Electroanalytical DNA Point Mutation Detection Platform for Early Diagnosis of Breast/Ovarian Cancer. Electroanalysis 2018, 30, 2110–2120. [Google Scholar] [CrossRef]
- Ahn, K.; Kim, S.-M.; Yu, I.J. Multi-Walled Carbon Nanotube (MWCNT) Dispersion and Aerosolization with Hot Water Atomization without Addition of Any Surfactant. Saf. Health Work 2011, 2, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Sun, X.; Dai, Z.; Gao, Y.; Gong, X.; Zhou, B.; Wu, J.; Wen, W. Point-of-Care Testing Detection Methods for COVID-19. Lab Chip 2021, 21, 1634–1660. [Google Scholar] [CrossRef]
- Chandra, P. Miniaturized Label-Free Smartphone Assisted Electrochemical Sensing Approach for Personalized COVID-19 Diagnosis. Sens. Int. 2020, 1, 100019. [Google Scholar] [CrossRef]
- Braun, V.; Blackmore, J.; Cleveland, R.O.; Butler, C.R. Transcranial Ultrasound Stimulation in Humans Is Associated with an Auditory Confound That Can Be Effectively Masked. Brain Stimul. 2020, 13, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; She, J.; Wang, Y.; Ma, X. Utility of Ferritin, Procalcitonin, and C-Reactive Protein in Severe Patients with 2019 Novel Coronavirus Disease. preprint 2020. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Zhao, X.; Guo, J.; Feng, S.; Fu, Y.; Kang, Y.; Guo, J. Microfluidics-Based Microwave Sensor. Sens. Actuators A Phys. 2020, 309, 111910. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, J.; Zhang, P.; Zhang, Y.; Miao, Y.; Gao, S.; Deng, Y.; Geng, L. Recent Advances in Microfluidic Chip Integrated Electronic Biosensors for Multiplexed Detection. Biosens. Bioelectron. 2018, 121, 272–280. [Google Scholar] [CrossRef]
- Yi-Qiang, F.; Hong-Liang, W.; Ke-Xin, G.; Jing-Ji, L.I.U.; Dong-Ping, C.; Zhang, Y.-J. Applications of Modular Microfluidics Technology. Chin. J. Anal. Chem. 2018, 46, 1863–1871. [Google Scholar]
- Dutse, S.W.; Yusof, N.A. Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview. Sensors 2011, 11, 5754–5768. [Google Scholar] [CrossRef]
- Simpson, C.; Lee, S.S.; Lee, C.-S.; Yamauchi, Y. Microfluidics: An Untapped Resource in Viral Diagnostics and Viral Cell Biology. Curr. Clin. Microbiol. Rep. 2018, 5, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Mujawar, M.A.; Gohel, H.; Bhardwaj, S.K.; Srinivasan, S.; Hickman, N.; Kaushik, A. Nano-Enabled Biosensing Systems for Intelligent Healthcare: Towards COVID-19 Management. Mater. Today Chem. 2020, 17, 100306. [Google Scholar] [CrossRef]
- Kaushik, A. Manipulative Magnetic Nanomedicine: The Future of COVID-19 Pandemic/Endemic Therapy. Expert. Opin. Drug Deliv. 2021, 18, 531–534. [Google Scholar] [CrossRef]
- Kecili, S.; Tekin, H.C. Adhesive Bonding Strategies to Fabricate High-Strength and Transparent 3D Printed Microfluidic Device. Biomicrofluidics 2020, 14, 24113. [Google Scholar] [CrossRef] [Green Version]
Target Analyte | Recognition Element | Electrode Modification | Platform Technology | Name | Sample Type | Integration with Smartphone | Electrochemical Detection Method | Response Time | Limit of Detection | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Spike protein | Monoclonal antibody | Fluorine doped tin oxide electrode with gold nanoparticles | Screen-printed carbon electrode | eCovSens | Saliva | No | DPV | 10–30 s | 90 fM | [89] |
Antibody | Laser-scribed graphene electrode combined with three-dimensional gold nanostructures | Miniaturise laser-scribed graphene electrode | - | Serum | Yes | DPV | 1 h | 2.9 ng/mL | [90] | |
Antibody | Graphene | Graphene-field effect transistor | COVID-19 field effect transistor sensor | Nasopharyngeal | No | - | >1 min | 1 fg/mL in antigen protein 1.6 × 101 pfu/mL in culture medium 2.42 × 102 copies/mL in clinical samples | [91] | |
IgG antibody | Cu2O nanocubes Staphylococcal protein A | Screen-printed carbon electrode | Nanobiodevice | Saliva and artificial nasopharyngeal | No | CV, EIS | 20 min | 0.04 fg/mL | [92] | |
Monoclonal antibody | Graphene | Screen printed electrode | - | - | No | CV, EIS | 45 min | 260 nM | [93] | |
Human angiotensin-converting enzyme | Gold nanoparticles | Graphite printed electrode | Low-cost Electrochemical Advanced Diagnostic (LEAD) | Saliva, nasopharyngeal swab | No | SWV | 6.5 min | 229 fg/mL | [94] | |
DNA Aptamer | Gold electrode | Electrochemical-aptamer-based (EAB) sensor | Serum and artificial saliva | No | SWV | 15 s | - | [95] | ||
Antibody | Glassy carbon electrode-gold cluster | - | - | Saliva and oropharyngeal swab | No | CV, SWV | ~35 min | 0.01 ag/mL | [96] | |
Monoclonal antibody | Glassy carbon electrode-reduced graphene oxide | - | - | Saliva | No | CV, EIS, SWV | - | 150 ng/mL | [97] | |
Angiotensin-converting enzyme-2 (ACE2) | Carbon electrode-Nafion permeable membrane | Screen-printed electrode | RAPID 1.0 | Saliva and Nasopharyngeal/oropharyngeal swab | Yes | CV, EIS | 4 min | 1.16 PFU/mL | [98] | |
IgG antibody | Graphene electrode | Screen-printed electrode (cellulose paper substrate) | Nasopharyngeal swab | Yes | CV, EIS | - | 0.25 fg/mL | [99] | ||
Spike protein and viral particles | DNA-spike antibody conjugate | Electrode-tethered sensors | - | - | Saliva | No | Chronoamperometry (CA) | 5 min | - | [100] |
Spike protein and receptor-binding domain | Monoclonal antibody | ACEA Bioscience’s 96-well platform integrated with sensing electrode | - | Serum | No | EIS | <5 min | - | - | [101] |
- | Cobalt-functionalized titanium dioxide nanotubes | Custom-cobalt-titanium dioxide nanotubes packaged printed circuit board setup | - | - | No | Amperometry | 30 s | ~0.7 nM | [102] | |
Antibodies | 3D nanoprinting of electrodes coated by reduced-graphene oxide | Microfluidic chip | 3D-printed COVID-19 test chip (3DcC) | - | Yes | EIS | ~ 11.5 s | 2.8 fM for S protein 16.9 fM for RBD | [103] | |
Antibodies | Graphene oxide | Folding paper-based electrochemical sensor | COVID-19 ePAD | Serum | Yes | SWV | 30 min | 0.11 ng/mL | [104] | |
IgG antibody | Zinc oxide nanowires | Microfluidic paper-based analytical devices (μPADs) | - | Serum | No | EIS | 15 min | - | [105] | |
ssDNA aptamer | Screen-printed carbon electrodes-gold nanoparticles | Screen-printed electrode | - | - | No | EIS | 40 min | 66 pg/mL | [106] | |
S1 and S2 glycoproteins | - | Graphene oxide and gold nanostars | Screen-printed electrode | - | Blood, saliva and nasopharyngeal swab | No | CV, DPV | 1 min | 1.68 × 10−22 µg/mL | [107] |
Nucleocapsid phosphoprotein | ssDNA | Gold nanoparticle and graphene nanoplatelets | Paper-based electrochemical platform | - | Nasopharyngeal and saliva | No | CV | <5 min | 6.9 copies/μL | [108] |
Antibody | Carbon nanofiber | Screen-printed carbon electrode coating with absorbing cotton padding | Cotton-tipped electrochemical immunosensor | Nasopharyngeal swab | Yes | SWV | ~20 min | 0.8 pg/mL | [109] | |
ssDNA | Indium doped tin oxide-polypyrrole-gold nanoparticles | Screen-printed indium doped tin oxide electrode | - | Nasopharyngeal swab | No | CV, EIS | 15 min | 258.01 copies/µL | [110] | |
Nucleocapsid gene amplicons | - | Gold electrode | Printed circuit-board-based lab-on-chips | - | - | No | CV, DPV | - | 10 pg/μL (approximately 1.7 fM | [111] |
Nucleocapsid and spike protein | One-step sandwich hybridization of isothermal rolling circle amplification amplicons | - | Screen-printed carbon electrode | - | Nasopharyngeal swab sample | No | DPV | 30 min <2 h from RNA extraction to the detection step | 1 copy/µL of N and S gene | [112] |
Antibody | Magnetic bead-based immunosensor combined with carbon black nanomaterial | Screen-printed electrode | - | Saliva | No | DPV | 30 min | 19 ng/mL for S protein 8 ng/mL for N protein | [113] | |
RNA | - | Gold | - | - | Nasopharyngeal | Yes | - | 70-80 s | Accuracy of 81% | [114] |
Replicase complex (ORF1ab) | p-sulfocalix[8]arene functionalized graphene | Screen-printed carbon electrode | - | Throat swab, urine, feces, serum, saliva | Yes | DPV | <10 s | 200 copies/mL | [115] | |
Reactive oxygen species | - | Multi-wall carbon nanotubes decorated electrode | Portable automatic electrochemical readout board and a sensing disposable sensor | COVID-19 associated ROS diagnosis (CRD) | Sputum | No | CV | <30 s | Accuracy: 97% Sensitivity: 97% | [116] |
Recombinant protein with anti-GFP nanobody | Nanobodies | Gold organic transistors | Nanobody-organic electrochemical transistors (OECT) disposable platform | - | Nasopharyngeal swab and saliva | No | CV, EIS | 10 min <15 min from sample to result | 1.2 × 10−21 M in saliva 1.8 × 10−20 M in buffer | [117] |
Antigen nucleocapsid protein, IgM and IgG antibodies, inflammatory biomarker C-reactive protein | Capture antigens and antibodies | Laser-engraved graphene | Multiplexed telemedicine platform system with a graphene sensor array connected to a printed circuit board for signal processing and wireless communication | SARS-CoV-2 RapidPlex | Serum and saliva | Yes | DPV, open-circuit potential-electrochemical impedance spectroscopy (OCP-EIS) | ~1 min | - | [118] |
ORF1ab fragment | Catalytic hairpin assembly and terminal deoxynucleotidyl transferase mediated-DNA polymerization | Gold electrode | - | - | Serum and saliva | No | EIS, DPV | - | 26 fM | [119] |
Type of Electrochemical Biosensors | Biorecognition Elements | Binding Interaction | Advantages | Drawbacks |
---|---|---|---|---|
Nucleic acid-based | ssDNA/RNA | DNA-DNA, DNA-RNA | Detection of ssDNA PCR products, simple to produce, stable, very specific, ability to miniaturize, easy to implement | Restricted for gene sequence detection, strict to hybridization conditions and expensive |
Aptamer | Aptamer-binding protein Aptamer-DNA Aptamer-antibody | Small size, low-cost, stable, simple to produce, high affinity and selectivity, wide variety of targets | Strict to hybridization conditions, long-term SELEX process and may require additional complex steps | |
Immunosensor | Monoclonal antibodies (mAb) | Non-covalent interaction between antibody-antigen/protein | More specific than pAb, low chances of cross-reaction | High cost, unstable (very sensitive to environmental conditions) and complex production |
Polyclonal antibodies (pAb) | Low production cost, various epitopes and mass-produce | Unstable (very sensitive to environmental conditions) and high chances of cross-reaction | ||
Antibody single chain Fv fragments (scFv) | Small size compared with the whole antibody and low variability | Longer time to produce, lower affinities compared with whole antibodies and not applicable for small molecules |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambry, N.S.; Obande, G.A.; Khalid, M.F.; Bustami, Y.; Hamzah, H.H.; Awang, M.S.; Aziah, I.; Manaf, A.A. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. Biosensors 2022, 12, 473. https://doi.org/10.3390/bios12070473
Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS, Aziah I, Manaf AA. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. Biosensors. 2022; 12(7):473. https://doi.org/10.3390/bios12070473
Chicago/Turabian StyleZambry, Nor Syafirah, Godwin Attah Obande, Muhammad Fazli Khalid, Yazmin Bustami, Hairul Hisham Hamzah, Mohd Syafiq Awang, Ismail Aziah, and Asrulnizam Abd Manaf. 2022. "Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review" Biosensors 12, no. 7: 473. https://doi.org/10.3390/bios12070473
APA StyleZambry, N. S., Obande, G. A., Khalid, M. F., Bustami, Y., Hamzah, H. H., Awang, M. S., Aziah, I., & Manaf, A. A. (2022). Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. Biosensors, 12(7), 473. https://doi.org/10.3390/bios12070473