Copper–Ruthenium Composite as Perspective Material for Bioelectrodes: Laser-Assisted Synthesis, Biocompatibility Study, and an Impedance-Based Cellular Biosensor as Proof of Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Cu-Based Electrodes
2.2. SEM and XRD Diagnostics
2.3. Admittance Measurement
2.4. Biocompatibility Study
2.5. Cell Adhesion Study
3. Results
3.1. Surface Characterization and Elemental Composition
3.2. Admittance Study
3.3. Biocompatibility and Cells Adhesion
3.4. Biosensor as a Proof of Concept
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. On the Origin of the CPE Exponent below 1/2
Appendix B. Estimation of the Effective Surface Area
References
- Grimnes, S.; Martinsen, O.G. Bioimpedance and Bioelectricity Basics; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Liu, Q.; Wang, P. Cell-Based Biosensors: Principles and Applications; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Liu, Q.; Wu, C.; Cai, H.; Hu, N.; Zhou, J.; Wang, P. Cell-based biosensors and their application in biomedicine. Chem. Rev. 2014, 114, 6423–6461. [Google Scholar]
- Stupin, D.D.; Kuzina, E.A.; Abelit, A.A.; Emelyanov, A.K.; Nikolaev, D.M.; Ryazantsev, M.N.; Koniakhin, S.V.; Dubina, M.V. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater. Sci. Eng. 2021, 7, 1962–1986. [Google Scholar] [CrossRef] [PubMed]
- Wegener, J.; Keese, C.R.; Giaever, I. Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 2000, 259, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaever, I.; Keese, C.R. Electric Cell-Substrate Impedance Sensing and Cancer Metastasis, 1st ed.; Cancer Metastasis—Biology and Treatment, 17; Jiang, W.G., Ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Tlili, C.; Reybier, K.; Géloën, A.; Ponsonnet, L.; Martelet, C.; Ouada, H.B.; Lagarde, M.; Jaffrezic-Renault, N. Fibroblast cells: A sensing bioelement for glucose detection by impedance spectroscopy. Anal. Chem. 2003, 75, 3340–3344. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Song, J.; Zhang, B.; Tanaka, H.; Gao, F.; Qiu, W.; Wang, Q. Synthesis of core-shell structured AU@Bi2S3 nanorod and its application as DNA immobilization matrix for electrochemical biosensor construction. Chin. Chem. Lett. 2020, 31, 181–184. [Google Scholar] [CrossRef]
- Banerjee, P.; Bhunia, A.K. Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol. 2009, 27, 179–188. [Google Scholar] [CrossRef]
- Nikolaev, D.M.; Panov, M.S.; Shtyrov, A.A.; Boitsov, V.M.; Vyazmin, S.Y.; Chakchir, O.B.; Yakovlev, I.P.; Ryazantsev, M.N. Perspective tools for optogenetics and photopharmacology: From design to implementation. In Progress in Photon Science; Springer: Berlin/Heidelberg, Germany, 2019; pp. 139–172. [Google Scholar]
- Neal, C.J.; Fox, C.R.; Sakthivel, T.S.; Kumar, U.; Fu, Y.; Drake, C.; Parks, G.D.; Seal, S. Metal-Mediated Nanoscale Cerium Oxide Inactivates Human Coronavirus and Rhinovirus by Surface Disruption. ACS Nano 2021, 15, 14544–14556. [Google Scholar] [CrossRef]
- Soares, A.C.; Soares, J.C.; Shimizu, F.M.; Melendez, M.E.; Carvalho, A.L.; Oliveira, O.N., Jr. Controlled film architectures to detect a biomarker for pancreatic cancer using impedance spectroscopy. ACS Appl. Mater. Interfaces 2015, 7, 25930–25937. [Google Scholar] [CrossRef]
- Shah, P.; Zhu, X.; Zhang, X.; He, J.; Li, C.Z. Microelectromechanical system-based sensing arrays for comparative in vitro nanotoxicity assessment at single cell and small cell-population using electrochemical impedance spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 5804–5812. [Google Scholar] [CrossRef]
- Stupin, D. A single-cell electronic sensor of toxins. J. Phys. Conf. Ser. 2017, 917, 042006. [Google Scholar] [CrossRef] [Green Version]
- Stingl, K.; Schippert, R.; Bartz-Schmidt, K.U.; Besch, D.; Cottriall, C.L.; Edwards, T.L.; Gekeler, F.; Greppmaier, U.; Kiel, K.; Koitschev, A.; et al. Interim results of a multicenter trial with the new electronic subretinal implant alpha AMS in 15 patients blind from inherited retinal degenerations. Front. Neurosci. 2017, 11, 445. [Google Scholar] [CrossRef] [Green Version]
- Ryazantsev, M.N.; Strashkov, D.M.; Nikolaev, D.M.; Shtyrov, A.A.; Panov, M.S. Photopharmacological compounds based on azobenzenes and azoheteroarenes: Principles of molecular design, molecular modelling, and synthesis. Russ. Chem. Rev. 2021, 90, 868. [Google Scholar] [CrossRef]
- Ayton, L.N.; Blamey, P.J.; Guymer, R.H.; Luu, C.D.; Nayagam, D.A.; Sinclair, N.C.; Shivdasani, M.N.; Yeoh, J.; McCombe, M.F.; Briggs, R.J.; et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE 2014, 9, e115239. [Google Scholar] [CrossRef] [Green Version]
- Fujikado, T.; Kamei, M.; Sakaguchi, H.; Kanda, H.; Morimoto, T.; Ikuno, Y.; Nishida, K.; Kishima, H.; Maruo, T.; Sawai, H.; et al. Clinical trial of chronic implantation of suprachoroidal-transretinal stimulation system for retinal prosthesis. Sens. Mater. 2012, 24, 181–187. [Google Scholar]
- Mathieson, K.; Loudin, J.; Goetz, G.; Huie, P.; Wang, L.; Kamins, T.I.; Galambos, L.; Smith, R.; Harris, J.S.; Sher, A.; et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 2012, 6, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.Y.; Chow, V.Y.; Packo, K.H.; Pollack, J.S.; Peyman, G.A.; Schuchard, R. The artificial silicon retina microchip for the treatment of visionloss from retinitis pigmentosa. Arch. Ophthalmol. 2004, 122, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiland, J.D.; Cho, A.K.; Humayun, M.S. Retinal prostheses: Current clinical results and future needs. Ophthalmology 2011, 118, 2227–2237. [Google Scholar] [CrossRef]
- Humayun, M.S.; de Juan, E., Jr.; Dagnelie, G. The bionic eye: A quarter century of retinal prosthesis research and development. Ophthalmology 2016, 123, S89–S97. [Google Scholar] [CrossRef]
- Hornig, R.; Zehnder, T.; Velikay-Parel, M.; Laube, T.; Feucht, M.; Richard, G. The IMI retinal implant system. In Artificial Sight; Springer: Berlin/Heidelberg, Germany, 2007; pp. 111–128. [Google Scholar]
- Kral, A.; Dorman, M.F.; Wilson, B.S. Neuronal development of hearing and language: Cochlear implants and critical periods. Annu. Rev. Neurosci. 2019, 42, 47–65. [Google Scholar] [CrossRef]
- Neroev, V.; Astakhov, Y.; Lobanova, M.; Stupin, D. Artificial Vision: Progress, Problems, Perspective. Russ. Ophthalmol. J. 2018, 11, 3–27. (In Russian) [Google Scholar]
- Das, A.; Dobbidi, P. Impedance Spectroscopy and ac Conductivity in Ba0.5Sr0.5TiO3–Ca10 (PO4)6(OH)2 Ceramic Composites: An Electrical Approach to Unveil Biocomposites. ACS Biomater. Sci. Eng. 2021, 7, 2296–2308. [Google Scholar] [CrossRef]
- Khare, D.; Basu, B.; Dubey, A.K. Electrically stimulated piezoelectric biomaterials as next generation implants for orthopedic applications. Biomaterials 2020, 258, 120280. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, N.; Griffiths, C.; Campbell, R.; Murray, A. Review of Seven cardiac Electrophysiology stimulators. Physiol. Meas. 1993, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Gala, M.; Vajdikova, I.; Babusiak, B.; Penhaker, M.; Cerny, M.; Augustynek, M. Battery check test on pacemaker by advanced technique. In Proceedings of the 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 23–25 January 2014; pp. 45–48. [Google Scholar]
- Zou, Y.; Guo, Z. A review of electrical impedance techniques for breast cancer detection. Med. Eng. Phys. 2003, 25, 79–90. [Google Scholar] [CrossRef]
- Van Eijnatten, M.A.; Van Rijssel, M.J.; Peters, R.J.; Verdaasdonk, R.M.; Meijer, J.H. Comparison of cardiac time intervals between echocardiography and impedance cardiography at various heart rates. J. Electr. Bioimpedance 2019, 5, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.H. Medical impedance tomography and process impedance tomography: A brief review. Meas. Sci. Technol. 2001, 12, 991. [Google Scholar] [CrossRef]
- Mahdavi, R.; Yousefpour, N.; Abbasvandi, F.; Ataee, H.; Hoseinpour, P.; Akbari, M.E.; Parniani, M.; Delshad, B.; Avatefi, M.; Nourinejad, Z.; et al. Intraoperative pathologically-calibrated diagnosis of lymph nodes involved by breast cancer cells based on electrical impedance spectroscopy; a prospective diagnostic human model study. Int. J. Surg. 2021, 96, 106166. [Google Scholar] [CrossRef] [PubMed]
- Bisio, M.; Pimashkin, A.; Buccelli, S.; Tessadori, J.; Semprini, M.; Levi, T.; Colombi, I.; Gladkov, A.; Mukhina, I.; Averna, A.; et al. Closed-Loop Systems and In Vitro Neuronal Cultures: Overview and Applications. In Vitro Neuronal Netw. 2019, 22, 351–387. [Google Scholar]
- Bou, A.; Bisquert, J. Impedance spectroscopy dynamics of biological neural elements: From memristors to neurons and synapses. J. Phys. Chem. B 2021, 125, 9934–9949. [Google Scholar] [CrossRef]
- Matsumura, R.; Yamamoto, H.; Hayakawa, T.; Katsurabayashi, S.; Niwano, M.; Hirano-Iwata, A. Dependence and Homeostasis of Membrane Impedance on Cell Morphology in Cultured Hippocampal Neurons. Sci. Rep. 2018, 8, 9905. [Google Scholar] [CrossRef]
- Alferov, Z.I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 2001, 73, 767. [Google Scholar] [CrossRef] [Green Version]
- Kilby, J.S.C. Turning potential into realities: The invention of the integrated circuit (Nobel lecture). ChemPhysChem 2001, 2, 482–489. [Google Scholar] [CrossRef]
- Kroemer, H. Nobel Lecture: Quasielectric fields and band offsets: Teaching electrons new tricks. Rev. Mod. Phys. 2001, 73, 783. [Google Scholar] [CrossRef]
- Moreau, W.M. Semiconductor Lithography: Principles, Practices, and Materials, 1st ed.; Microdevices; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Hodgkin, D.C. The X-ray Analysis of Complicated Molecules, Nobel Lecture, December 11, 1964. In Nobel Lectures, Chemistry 1963–1970; World Scientific: Singapore, 1972; Volume 71, p. 91. [Google Scholar]
- Huxley, A. The quantitative analysis of excitation and conduction in nerve. Les Prix Nobel 1963, 1963, 242–260. [Google Scholar] [CrossRef]
- Masters, J.R. HeLa cells 50 years on: The good, the bad and the ugly. Nat. Rev. Cancer 2002, 2, 315. [Google Scholar] [CrossRef] [PubMed]
- Dahodwala, H.; Lee, K.H. The fickle CHO: A review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr. Opin. Biotechnol. 2019, 60, 128–137. [Google Scholar] [CrossRef]
- Kelly, A.; Farid, N.; Krukiewicz, K.; Belisle, N.; Groarke, J.; Waters, E.M.; Trotier, A.; Laffir, F.; Kilcoyne, M.; O’Connor, G.M.; et al. Laser-Induced Periodic Surface Structure Enhances Neuroelectrode Charge Transfer Capabilities and Modulates Astrocyte Function. ACS Biomater. Sci. Eng. 2020, 6, 1449–1461. [Google Scholar] [CrossRef]
- Nycz, M.; Arkusz, K.; Pijanowska, D.G. Electrodes Based on a Titanium Dioxide Nanotube–Spherical Silver Nanoparticle Composite for Sensing of Proteins. ACS Biomater. Sci. Eng. 2020, 7, 105–113. [Google Scholar] [CrossRef]
- Kundu, A.; McCoy, L.; Azim, N.; Nguyen, H.; Didier, C.M.; Ausaf, T.; Sharma, A.D.; Curley, J.L.; Moore, M.J.; Rajaraman, S. Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays for Interfacing with a Peripheral Nerve-on-a-Chip. ACS Biomater. Sci. Eng. 2020, 7, 3018–3029. [Google Scholar] [CrossRef]
- Luque, G.L.; Rodríguez, M.C.; Rivas, G.A. Glucose biosensors based on the immobilization of copper oxide and glucose oxidase within a carbon paste matrix. Talanta 2005, 66, 467–471. [Google Scholar] [CrossRef]
- Rodriguez, M.; Rivas, G. Amperometric glucose biosensor based on the deposition of copper and glucose oxidase onto glassy carbon transducer. Anal. Lett. 2000, 33, 2373–2389. [Google Scholar] [CrossRef]
- Bodade, A.; Taiwade, M.; Chaudhari, G. Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor. J. Appl. Pharm. Res. 2017, 5, 30–39. [Google Scholar]
- Rodriguez, M.; Rivas, G. Highly selective first generation glucose biosensor based on carbon paste containing copper and glucose oxidase. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2001, 13, 1179–1184. [Google Scholar] [CrossRef]
- Zhou, W.; Song, R.; Pan, X.; Peng, Y.; Qi, X.; Peng, J.; Hui, K.; Hui, K. Fabrication and impedance measurement of novel metal dry bioelectrode. Sens. Actuators A Phys. 2013, 201, 127–133. [Google Scholar] [CrossRef]
- Zhou, W.; Ling, W.s.; Liu, W.; Peng, Y.; Peng, J. Laser direct micromilling of copper-based bioelectrode with surface microstructure array. Opt. Lasers Eng. 2015, 73, 7–15. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, W.; Liu, S.; Zhang, G.; Shen, Z. Experimental investigation on surface wettability of copper-based dry bioelectrodes. Sens. Actuators A Phys. 2016, 244, 237–242. [Google Scholar] [CrossRef]
- Charkhkar, H.; Frewin, C.; Nezafati, M.; Knaack, G.L.; Peixoto, N.; Saddow, S.E.; Pancrazio, J.J. Use of cortical neuronal networks for in vitro material biocompatibility testing. Biosens. Bioelectron. 2014, 53, 316–323. [Google Scholar] [CrossRef]
- Abe, S.; Iwadera, N.; Narushima, T.; Uchida, Y.; Uo, M.; Akasaka, T.; Yawaka, Y.; Watari, F.; Yonezawa, T. Comparison of biodistribution and biocompatibility of gelatin-coated copper nanoparticles and naked copper oxide nanoparticles. E-J. Surf. Sci. Nanotechnol. 2012, 10, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, H.L.; Gustafsson, J.; Cronholm, P.; Möller, L. Size-dependent toxicity of metal oxide particles—A comparison between nano-and micrometer size. Toxicol. Lett. 2009, 188, 112–118. [Google Scholar] [CrossRef]
- Kolawole, S.K.; Hai, W.; Zhang, S.; Sun, Z.; Siddiqui, M.A.; Ullah, I.; Song, W.; Witte, F.; Yang, K. Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application. J. Mater. Sci. Technol. 2020, 50, 31–43. [Google Scholar] [CrossRef]
- Jin, S.; Ren, L.; Yang, K. Bio-functional Cu containing biomaterials: A new way to enhance bio-adaption of biomaterials. J. Mater. Sci. Technol. 2016, 32, 835–839. [Google Scholar] [CrossRef]
- Ma, Z.; Li, M.; Liu, R.; Ren, L.; Zhang, Y.; Pan, H.; Zhao, Y.; Yang, K. In vitro study on an antibacterial Ti–5Cu alloy for medical application. J. Mater. Sci. Mater. Med. 2016, 27, 91. [Google Scholar] [CrossRef]
- Karthika, A. Biocompatible iron and copper incorporated nanohydroxyapatite coating for biomedical implant applications. Mater. Today Proc. 2021, 51, 1754–1759. [Google Scholar] [CrossRef]
- Bertuola, M.; Grillo, C.A.; Pissinis, D.E.; Prieto, E.D.; de Mele, M.F.L. Is the biocompatibility of copper with polymerized natural coating dependent on the potential selected for the electropolymerization process? Colloids Surf. B Biointerfaces 2017, 159, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.E.A.; Carvalho, A.A.; Azevedo, A.L.; Cruz, C.B.; Maia, A.W.C. Odontologic use of copper/aluminum alloys: Mitochondrial respiration as sensitive parameter of biocompatibility. Braz. Dent. J. 2003, 14, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panov, M.S.; Grishankina, A.E.; Stupin, D.D.; Lihachev, A.I.; Mironov, V.N.; Strashkov, D.M.; Khairullina, E.M.; Tumkin, I.I.; Ryazantsev, M.N. In Situ Laser-Induced Fabrication of a Ruthenium-Based Microelectrode for Non-Enzymatic Dopamine Sensing. Materials 2020, 13, 5385. [Google Scholar] [CrossRef]
- Atmaramani, R.; Chakraborty, B.; Rihani, R.T.; Usoro, J.; Hammack, A.; Abbott, J.; Nnoromele, P.; Black, B.J.; Pancrazio, J.J.; Cogan, S.F. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation. Acta Biomater. 2020, 101, 565–574. [Google Scholar] [CrossRef]
- Panov, M.S.; Khairullina, E.; Vshivtcev, F.S.; Ryazantsev, M.N.; Tumkin, I.I. Laser-Induced Synthesis of Composite Materials Based on Iridium, Gold and Platinum for Non-Enzymatic Glucose Sensing. Materials 2020, 13, 3359. [Google Scholar] [CrossRef]
- El-Khoury, P.Z.; Tarnovsky, A.N.; Schapiro, I.; Ryazantsev, M.N.; Olivucci, M. Structure of the photochemical reaction path populated via promotion of CF2I2 into its first excited state. J. Phys. Chem. A 2009, 113, 10767–10771. [Google Scholar] [CrossRef] [Green Version]
- Sugioka, K.; Meunier, M.; Piqué, A. Laser Precision Microfabrication; Springer: Berlin/Heidelberg, Germany, 2010; Volume 135. [Google Scholar]
- Ryazantsev, M.N.; Jamal, A.; Maeda, S.; Morokuma, K. Global investigation of potential energy surfaces for the pyrolysis of C 1–C 3 hydrocarbons: Toward the development of detailed kinetic models from first principles. Phys. Chem. Chem. Phys. 2015, 17, 27789–27805. [Google Scholar] [CrossRef]
- Khairullina, E.M.; Tumkin, I.I.; Stupin, D.D.; Smikhovskaia, A.V.; Mereshchenko, A.S.; Lihachev, A.I.; Vasin, A.V.; Ryazantsev, M.N.; Panov, M.S. Laser-assisted surface modification of Ni microstructures with Au and Pt toward cell biocompatibility and high enzyme-free glucose sensing. ACS Omega 2021, 6, 18099–18109. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.Y.; Park, S.M. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 2010, 3, 207–229. [Google Scholar] [CrossRef] [PubMed]
- Popkirov, G.; Schindler, R. A new impedance spectrometer for the investigation of electrochemical systems. Rev. Sci. Instrum. 1992, 63, 5366–5372. [Google Scholar] [CrossRef]
- Stupin, D.D.; Koniakhin, S.V.; Verlov, N.A.; Dubina, M.V. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation. Phys. Rev. Appl. 2017, 7, 054024. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, J.R.; Schoonman, J.; Lehnen, A. Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data. J. Electroanal. Chem. Interfacial Electrochem. 1982, 131, 77–95. [Google Scholar] [CrossRef]
- Jorcin, J.B.; Orazem, M.E.; Pébère, N.; Tribollet, B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1473–1479. [Google Scholar] [CrossRef]
- Kanoun, O. Progress Reports on Impedance Spectroscopy (Measurements, Modeling, and Application) || Frequency-Dependent Phase Correction for Impedance Measurements; De Gruyter Oldenbourg: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Matsumoto, B. Cell Biologcal Applications of Confocal Microscopy; Methods in Cell Biology 38; Academic Press, Elsevier: Cambridge, MA, USA, 1993. [Google Scholar]
- De Levie, R. The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochim. Acta 1965, 10, 113–130. [Google Scholar] [CrossRef]
- de Levie, R. Fractals and rough electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1990, 281, 1–21. [Google Scholar] [CrossRef]
- Rammelt, U.; Reinhard, G. On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes. Electrochim. Acta 1990, 35, 1045–1049. [Google Scholar] [CrossRef]
- Nyikos, L.; Pajkossy, T. Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim. Acta 1985, 30, 1533–1540. [Google Scholar] [CrossRef]
- Kerner, Z.; Pajkossy, T. On the origin of capacitance dispersion of rough electrodes. Electrochim. Acta 2000, 46, 207–211. [Google Scholar] [CrossRef]
- Feynman, R.P. The Feynman Lectures on Physics, 1st ed.; Addison-Wesley Pub (Sd): Boston, MA, USA, 1963; Volume V1. [Google Scholar]
- De Levie, R. On porous electrodes in electrolyte solutions—IV. Electrochim. Acta 1964, 9, 1231–1245. [Google Scholar] [CrossRef]
- Liu, S. Fractal model for the ac response of a rough interface. Phys. Rev. Lett. 1985, 55, 529. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, M.; Hatada, Y.; Shitanda, I.; Watanabe, K. Complex impedance spectra of porous electrode with fractal structure. Electrochim. Acta 2010, 55, 6255–6262. [Google Scholar] [CrossRef]
- Paasch, G.; Micka, K.; Gersdorf, P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochim. Acta 1993, 38, 2653–2662. [Google Scholar] [CrossRef]
- Adhikary, A.; Khanra, M.; Pal, J.; Biswas, K. Realization of fractional order elements. Inae Lett. 2017, 2, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Adhikary, A.; Khanra, M.; Sen, S.; Biswas, K. Realization of a carbon nanotube based electrochemical fractor. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 2329–2332. [Google Scholar]
- Adhikary, A.; Shil, A.; Biswas, K. Realization of foster structure-based ladder fractor with phase band specification. Circuits Syst. Signal Process. 2020, 39, 2272–2292. [Google Scholar] [CrossRef]
- Stupin, D.; Lihachev, A.; Nashchekin, A. How to take fractional-order derivative experimentally? J. Phys. Conf. Ser. 2018, 1124, 071011. [Google Scholar] [CrossRef]
Electrode Material | Reagent, (mM) | Solvent |
---|---|---|
Cu | copper(II) chloride dihydrate (CuCl2 HO), (2) | H2O |
potassium sodium tartrate tetrahydrate (KNaCHO4HO), (7) | ||
sodium hydroxide (NaOH), (10) | ||
Cu–Ru | triruthenium dodecacarbonyl (Ru(CO)), (3) | DMF |
Parameter | R, k | W, S·s | |
---|---|---|---|
Cu | 4.60(9) | 3.5(3) × | 0.28(1) |
Cu–Ru | 7.5(1) | 3.2(9) × | 0.34(3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stupin, D.D.; Abelit, A.A.; Mereshchenko, A.S.; Panov, M.S.; Ryazantsev, M.N. Copper–Ruthenium Composite as Perspective Material for Bioelectrodes: Laser-Assisted Synthesis, Biocompatibility Study, and an Impedance-Based Cellular Biosensor as Proof of Concept. Biosensors 2022, 12, 527. https://doi.org/10.3390/bios12070527
Stupin DD, Abelit AA, Mereshchenko AS, Panov MS, Ryazantsev MN. Copper–Ruthenium Composite as Perspective Material for Bioelectrodes: Laser-Assisted Synthesis, Biocompatibility Study, and an Impedance-Based Cellular Biosensor as Proof of Concept. Biosensors. 2022; 12(7):527. https://doi.org/10.3390/bios12070527
Chicago/Turabian StyleStupin, Daniil D., Anna A. Abelit, Andrey S. Mereshchenko, Maxim S. Panov, and Mikhail N. Ryazantsev. 2022. "Copper–Ruthenium Composite as Perspective Material for Bioelectrodes: Laser-Assisted Synthesis, Biocompatibility Study, and an Impedance-Based Cellular Biosensor as Proof of Concept" Biosensors 12, no. 7: 527. https://doi.org/10.3390/bios12070527
APA StyleStupin, D. D., Abelit, A. A., Mereshchenko, A. S., Panov, M. S., & Ryazantsev, M. N. (2022). Copper–Ruthenium Composite as Perspective Material for Bioelectrodes: Laser-Assisted Synthesis, Biocompatibility Study, and an Impedance-Based Cellular Biosensor as Proof of Concept. Biosensors, 12(7), 527. https://doi.org/10.3390/bios12070527