Ultralow Laser Power Three-Dimensional Superresolution Microscopy Based on Digitally Enhanced STED
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. 3D DE-STED Imaging of Fluorescence Beads
3.1.1. Imaging of Fluorescent Beads on the Lateral Profile
3.1.2. Imaging of Fluorescent Beads on 3D
3.2. 3D DE-STED Imaging of Fixed Biological Cells
3.2.1. Imaging of the Lateral Nuclear Pore Complex
3.2.2. Imaging of Nuclear Pore Complexes in 3D
3.3. 3D DE-STED Imaging of Living Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, B.; Jones, S.A.; Brandenburg, B.; Zhuang, X.W. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 2008, 5, 1047–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [Green Version]
- Rust, M.J.; Bates, M.; Zhuang, X.W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–795. [Google Scholar] [CrossRef] [Green Version]
- Sahl, S.J.; Hell, S.W.; Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 2017, 18, 685–701. [Google Scholar] [CrossRef]
- Sigal, Y.M.; Zhou, R.B.; Zhuang, X.W. Visualizing and discovering cellular structures with super-resolution microscopy. Science 2018, 361, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.Y.; Xi, P.; Wang, B.M.; Zhang, L.; Enderlein, J.; van Oijen, A.M. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 2018, 15, 415–423. [Google Scholar] [CrossRef]
- Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019, 21, 72–84. [Google Scholar] [CrossRef]
- Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [Google Scholar] [CrossRef] [Green Version]
- Hell, S.W. Microscopy and its focal switch. Nat. Methods 2009, 6, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blom, H.; Widengren, J. Stimulated Emission Depletion Microscopy. Chem. Rev. 2017, 117, 7377–7427. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Yan, W.; Zhang, J.; Wang, L.W.; Yang, Z.G.; Qu, J.L. New advances in the research of stimulated emission depletion super-resolution microscopy. Acta Phys. Sin. 2020, 69, 22. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, J.; Wang, L.W.; Gao, X.W.; Shao, Y.H.; Liu, L.W.; Yang, Z.G.; Yan, W.; Qu, J.L. Dual-color STED super-resolution microscope using a single laser source. J. Biophotonics 2020, 13, 10. [Google Scholar] [CrossRef]
- Zhao, M.J.; Ye, S.; Peng, X.; Song, J.; Qu, J.L. Green emitted CdSe@ZnS quantum dots for FLIM and STED imaging applications. J. Innov. Opt. Health Sci. 2019, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Vicidomini, G.; Moneron, G.; Han, K.Y.; Westphal, V.; Ta, H.; Reuss, M.; Engelhardt, J.; Eggeling, C.; Hell, S.W. Sharper low-power STED nanoscopy by time gating. Nat. Methods 2011, 8, U571–U575. [Google Scholar] [CrossRef]
- Vicidomini, G.; Schonle, A.; Ta, H.S.; Han, K.Y.; Moneron, G.; Eggeling, C.; Hell, S.W. STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental Aspects. PLoS ONE 2013, 8, e54421. [Google Scholar] [CrossRef]
- Wang, Y.F.; Kuang, C.F.; Gu, Z.T.; Xu, Y.K.; Li, S.; Hao, X.; Liu, X. Time-gated stimulated emission depletion nanoscopy. Opt. Eng. 2013, 52, 8. [Google Scholar] [CrossRef]
- Kuang, C.F.; Li, S.; Liu, W.; Hao, X.; Gu, Z.T.; Wang, Y.F.; Ge, J.H.; Li, H.F.; Liu, X. Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy. Sci. Rep. 2013, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Prunsche, B.; Zhou, L.; Nienhaus, K.; Nienhaus, G.U. Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nat. Photonics 2017, 11, 163–169. [Google Scholar] [CrossRef]
- Yan, W.; Yang, Y.L.; Tan, Y.; Chen, X.; Li, Y.; Qu, J.L.; Ye, T. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples. Photonics Res. 2017, 5, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.W.; Chen, B.L.; Yan, W.; Yang, Z.G.; Peng, X.; Lin, D.Y.; Weng, X.Y.; Ye, T.; Qu, J.L. Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach. Nanoscale 2018, 10, 16252–16260. [Google Scholar] [CrossRef]
- Wang, L.W.; Chen, Y.; Peng, X.; Zhang, J.; Wang, J.L.; Liu, L.W.; Yang, Z.G.; Yan, W.; Qu, J.L. Ultralow power demand in fluorescence nanoscopy with digitally enhanced stimulated emission depletion. Nanophotonics 2020, 9, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gao, X.W.; Wang, L.W.; Guo, Y.; Zhu, Y.R.; Yang, Z.G.; Yan, W.; Qu, J.L. Low-Power Two-Color Stimulated Emission Depletion Microscopy for Live Cell Imaging. Biosensors 2021, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.W.; Chen, Y.; Guo, Y.; Xie, W.X.; Yang, Z.G.; Weng, X.Y.; Yan, W.; Qu, J.L. Low-power STED nanoscopy based on temporal and spatial modulation. Nano Res. 2022, 15, 3479–3486. [Google Scholar] [CrossRef]
- Wang, L.W.; Li, J.; Chen, Y.; Guo, Y.; Yang, Z.G.; Weng, X.Y.; Yan, W.; Qu, J.L. Implementation of a fluorescence spatiotemporal modulation super-resolution microscope. Opt. Lett. 2022, 47, 581–584. [Google Scholar] [CrossRef]
- Wildanger, D.; Medda, R.; Kastrup, L.; Hell, S.W. A compact STED microscope providing 3D nanoscale resolution. J. Microsc. 2009, 236, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.; Stelzer, E.H.K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 1992, 9, 2159–2166. [Google Scholar] [CrossRef]
- Dyba, M.; Hell, S.W. Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 2002, 88, 4. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Wurm, C.A.; Jakobs, S.; Engelhardt, J.; Egner, A.; Hell, S.W. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 2008, 5, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.S.; Xie, H.; Alonas, E.; Liu, Y.J.; Chen, X.Z.; Santangelo, P.J.; Ren, Q.S.; Xi, P.; Jin, D.Y. Mirror-enhanced super-resolution microscopy. Light-Sci. Appl. 2016, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; So, P.T.C. Three-dimensional super-resolution high-throughput imaging by structured illumination STED microscopy. Opt. Express 2018, 26, 20920–20928. [Google Scholar] [CrossRef] [PubMed]
- Vicidomini, G.; Moneron, G.; Eggeling, C.; Rittweger, E.; Hell, S.W. STED with wavelengths closer to the emission maximum. Opt. Express 2012, 20, 5225–5236. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Wang, L.; Li, W.; Wang, H.; Zhou, H.; Zhu, Y.; Yan, W.; Qu, J. Ultralow Laser Power Three-Dimensional Superresolution Microscopy Based on Digitally Enhanced STED. Biosensors 2022, 12, 539. https://doi.org/10.3390/bios12070539
Shen X, Wang L, Li W, Wang H, Zhou H, Zhu Y, Yan W, Qu J. Ultralow Laser Power Three-Dimensional Superresolution Microscopy Based on Digitally Enhanced STED. Biosensors. 2022; 12(7):539. https://doi.org/10.3390/bios12070539
Chicago/Turabian StyleShen, Xiaochun, Luwei Wang, Wei Li, He Wang, Hanqiu Zhou, Yinru Zhu, Wei Yan, and Junle Qu. 2022. "Ultralow Laser Power Three-Dimensional Superresolution Microscopy Based on Digitally Enhanced STED" Biosensors 12, no. 7: 539. https://doi.org/10.3390/bios12070539
APA StyleShen, X., Wang, L., Li, W., Wang, H., Zhou, H., Zhu, Y., Yan, W., & Qu, J. (2022). Ultralow Laser Power Three-Dimensional Superresolution Microscopy Based on Digitally Enhanced STED. Biosensors, 12(7), 539. https://doi.org/10.3390/bios12070539