Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements
Abstract
:1. Introduction
2. STM Break Junction Technique
3. pH Detection
4. Ion Detection
5. Genetic Materials Detection
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gooding, J.J.; Gaus, K. Single-molecule sensors: Challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. 2016, 55, 11354–11366. [Google Scholar] [CrossRef] [PubMed]
- Holzmeister, P.; Acuna, G.P.; Grohmann, D.; Tinnefeld, P. Breaking the concentration limit of optical single-molecule detection. Chem. Soc. Rev. 2014, 43, 1014–1028. [Google Scholar] [CrossRef] [PubMed]
- Miles, B.N.; Ivanov, A.P.; Wilson, K.A.; Doğan, F.; Japrung, D.; Edel, J.B. Single molecule sensing with solid-state nanopores: Novel materials, methods, and applications. Chem. Soc. Rev. 2013, 42, 15–28. [Google Scholar] [CrossRef]
- Gu, L.Q.; Shim, J.W. Single molecule sensing by nanopores and nanopore devices. Analyst 2010, 135, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Gooding, J.J. The application of single molecule nanopore sensing for quantitative analysis. Chem. Soc. Rev. 2022, 51, 3862–3885. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, D.; Yue, H.; French, J.B.; Rufo, J.; Benkovic, S.J.; Huang, T.J. Technologies for single-molecule studies. Lab A Chip 2013, 13, 2183–2198. [Google Scholar] [CrossRef]
- Selck, D.A.; Karymov, M.A.; Sun, B.; Ismagilov, R.F. Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements. Anal. Chem. 2013, 85, 11129–11136. [Google Scholar] [CrossRef] [Green Version]
- Vietz, C.; Schütte, M.L.; Wei, Q.; Richter, L.; Lalkens, B.; Ozcan, A.; Tinnefeld, P.; Acuna, G.P. Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: Reducing the gap toward single-molecule sensitivity. ACS Omega 2019, 4, 637–642. [Google Scholar] [CrossRef]
- Walt, D.R. Optical methods for single molecule detection and analysis. Anal. Chem. 2013, 85, 1258–1263. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Tao, N.J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Rudnev, A.V.; Hong, W.J.; Wandlowski, T. Break junction under electrochemical gating: Testbed for single-molecule electronics. Chem. Soc. Rev. 2015, 44, 889–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Xu, Y.X.; Su, J.Q.; Radjenovic, P.M.; Wang, Y.H.; Zheng, J.F.; Teng, B.; Shao, Y.; Zhou, X.S.; Li, J.F. Probing interfacial electronic effects on single-molecule adsorption geometry and electron transport at stomically flat surfaces. Angew. Chem. Int. Ed. 2021, 60, 15452–15458. [Google Scholar] [CrossRef] [PubMed]
- Inkpen, M.S.; Liu, Z.F.; Li, H.X.; Campos, L.M.; Neaton, J.B.; Venkataraman, L. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Tang, Y.X.; Ye, Y.L.; Yan, Z.W.; Chen, Z.X.; Chen, L.J.; Zhang, L.Y.; Liu, J.Y.; Shi, J.; Xia, H.P.; et al. Identifying the conformational isomers of single-molecule cyclohexane at room temperature. Chem 2020, 6, 2770–2781. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, X.L.; Jia, C.C.; Lee, T.; Guo, X.F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef]
- Rascon-Ramos, H.; Artes, J.M.; Li, Y.H.; Hihath, J. Binding configurations and intramolecular strain in single-molecule devices. Nat. Mater. 2015, 14, 517–522. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Xu, H.Q.; Wang, J.Y.; Chen, W.; Zhao, M.P. Single-molecule fluorescence techniques for membrane protein dynamics analysis. Appl. Spectrosc. 2021, 75, 491–505. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, J.G.; Ma, F.; Zhang, C.Y. Advances in single-molecule fluorescent nanosensors. WIREs Nanomed. Nanobiotechnol. 2021, 13, e1716. [Google Scholar] [CrossRef]
- Iwane, M.; Fujii, S.; Kiguchi, M. Surface-enhanced Raman scattering in molecular junctions. Sensors 2017, 17, 1901. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, M.; Huang, Q. A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021, 227, 122188. [Google Scholar] [CrossRef]
- Lee, H.M.; Jin, S.M.; Kim, H.M.; Suh, Y.D. Single-molecule surface-enhanced Raman spectroscopy: A perspective on the current status. Phys. Chem. Chem. Phys. 2013, 15, 5276–5287. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.A.; Dina, N.E.; Cheng, H.Y.; Valev, V.K.; Zhang, L.W. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale 2021, 13, 13906. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A.P.; Edel, J.B. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 952. [Google Scholar] [CrossRef]
- Hu, Z.-L.; Huo, M.-Z.; Ying, Y.-L.; Long, Y.-T. Biological nanopore approach for single-molecule protein sequencing. Angew. Chem. Int. Ed. 2021, 60, 14738–14749. [Google Scholar] [CrossRef]
- Li, Z.; Smeu, M.; Afsari, S.; Xing, Y.; Ratner, M.A.; Borguet, E. Single-molecule sensing of environmental pH—An STM break junction and NEGF-DFT approach. Angew. Chem. Int. Ed. 2014, 53, 1098–1102. [Google Scholar] [CrossRef]
- Scullion, L.; Doneux, T.; Bouffier, L.; Fernig, D.G.; Higgins, S.J.; Bethell, D.; Nichols, R.J. Large conductance changes in peptide single molecule junctions controlled by pH. J. Phys. Chem. C 2011, 115, 8361–8368. [Google Scholar] [CrossRef]
- Ai, Q.; Fu, Q.; Liang, F. pH-mediated single molecule conductance of cucurbit[7]uril. Front. Chem. 2020, 8, 736. [Google Scholar] [CrossRef]
- Tang, C.; Huang, L.; Sangtarash, S.; Noori, M.; Sadeghi, H.; Xia, H.; Hong, W. Reversible switching between destructive and constructive quantum interference using atomically precise chemical gating of single-molecule junctions. J. Am. Chem. Soc. 2021, 143, 9385–9392. [Google Scholar] [CrossRef]
- Pan, X.; Lawson, B.; Rustad, A.M.; Kamenetska, M. pH-activated single molecule conductance and binding mechanism of imidazole on gold. Nano Lett. 2020, 20, 4687–4692. [Google Scholar] [CrossRef]
- Brooke, R.J.; Szumski, D.S.; Vezzoli, A.; Higgins, S.J.; Nichols, R.J.; Schwarzacher, W. Dual control of molecular conductance through pH and potential in single-molecule devices. Nano Lett. 2018, 18, 1317–1322. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.P.; Jiang, C.C.; Wang, Y.H.; Zheng, J.F.; Shao, Y.; Zhou, X.S. Single-molecule sensing of interfacial acid–base chemistry. J. Phys. Chem. Lett. 2020, 11, 10023–10028. [Google Scholar] [CrossRef]
- Yang, F.; Chen, F.; Wu, X.H.; Luo, J.; Zhou, X.S.; Horsley, J.R.; Abell, A.D.; Yu, J.X.; Jin, S.; Mao, B.W. Unique metal cation recognition via crown ether-derivatized oligo(phenyleneethynylene) molecular junction. J. Phys. Chem. C 2020, 124, 8496–8503. [Google Scholar]
- Baghernejad, M.; Van Dyck, C.; Bergfield, J.; Levine, D.R.; Gubicza, A.; Tovar, J.D.; Calame, M.; Broekmann, P.; Hong, W. Quantum interference enhanced chemical responsivity in single-molecule dithienoborepin junctions. Chem. Eur. 2019, 25, 15141–15146. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhuang, X.Y.; Lin, L.C.; Liu, J.Y.; Yao, Z.Y.; Xiao, Z.Y.; Shi, J.; Fang, B.S.; Hong, W.J. Determination of Ag[I] and NADH using single-molecule conductance ratiometric probes. ACS Sens. 2021, 6, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; He, J.; Kibel, A.; Lee, M.; Sankey, O.; Zhang, P.; Lindsay, S. Tunneling readout of hydrogen-bonding-based recognition. Nat. Nanotechnol. 2009, 4, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, J.; Chang, S.A.; Zhang, P.M.; Liang, F.; Li, S.Q.; Tuchband, M.; Fuhrmann, A.; Ros, R.; Lindsay, S. Identifying single bases in a DNA oligomer with electron tunneling. Nat. Nanotechnol. 2010, 5, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Artes, J.M.; Demir, B.; Gokce, S.; Mohammad, H.M.; Alangari, M.; Anantram, M.P.; Oren, E.E.; Hihath, J. Detection and identification of genetic material via single-molecule conductance. Nat. Nanotechnol. 2018, 13, 1167–1173. [Google Scholar] [CrossRef]
- Ratner, M.A. Brief history of molecular electronics. Nat. Nanotechnol. 2013, 8, 378–381. [Google Scholar] [CrossRef]
- Huang, B.; Liu, X.; Yuan, Y.; Hong, Z.W.; Zheng, J.F.; Pei, L.Q.; Shao, Y.; Li, J.F.; Zhou, X.S.; Chen, J.Z.; et al. Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions. J. Am. Chem. Soc. 2018, 140, 17685–17690. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, Y.H.; Seng, J.W.; Zheng, J.F.; Cao, R.; Shao, Y.; Chen, J.Z.; Li, J.F.; Zhou, X.S.; Mao, B.W. Z-Piezo pulse-modulated STM Break Junction: Toward single-molecule rectifiers with dissimilar metal electrodes. ACS Appl. Mater. Interfaces 2021, 13, 8656–8663. [Google Scholar] [CrossRef]
- Ho Choi, S.; Kim, B.; Frisbie, C.D. Electrical resistance of long conjugated molecular wires. Science 2008, 320, 1482–1486. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Y.H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X.S.; Zhao, Z.; Tang, B.Z. Multichannel conductance of folded single-molecule wires aided by through-space conjugation. Angew. Chem. Int. Ed. 2015, 54, 4231–4235. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Risko, C.; Delgado, M.C.R.; Kim, B.; Brédas, J.L.; Frisbie, C.D. Transition from tunneling to hopping transport in long, conjugated oligo-imine wires connected to metals. J. Am. Chem. Soc. 2010, 132, 4358–4368. [Google Scholar] [CrossRef]
- Wang, Y.H.; Huang, H.; Yu, Z.; Zheng, J.F.; Shao, Y.; Zhou, X.S.; Chen, J.Z.; Li, J.F. Modulating electron transport through single-molecule junctions by heteroatom substitution. J. Mater. Chem. C 2020, 8, 6826–6831. [Google Scholar] [CrossRef]
- Mao, J.C.; Peng, L.L.; Li, W.Q.; Chen, F.; Wang, H.G.; Shao, Y.; Zhou, X.S.; Zhao, X.Q.; Xie, H.J.; Niu, Z.J. Influence of molecular structure on contact interaction between thiophene anchoring group and Au electrode. J. Phys. Chem. C 2017, 121, 1472–1476. [Google Scholar] [CrossRef]
- Wang, Y.H.; Hong, Z.W.; Sun, Y.Y.; Li, D.F.; Han, D.; Zheng, J.F.; Niu, Z.J.; Zhou, X.S. Tunneling decay constant of alkanedicarboxylic acids: Different dependence on the metal electrodes between air and electrochemistry. J. Phys. Chem. C 2014, 118, 18756–18761. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhou, X.Y.; Sun, Y.Y.; Han, D.; Zheng, J.F.; Niu, Z.J.; Zhou, X.S. Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction. Electrochimica 2014, 123, 205–210. [Google Scholar] [CrossRef]
- Song, H.; Kim, Y.; Jang, Y.H.; Jeong, H.; Reed, M.A.; Lee, T. Observation of molecular orbital gating. Nature 2009, 462, 1039–1043. [Google Scholar] [CrossRef]
- Kay, N.J.; Higgins, S.J.; Jeppesen, J.O.; Leary, E.; Lycoops, J.; Ulstrup, J.; Nichols, R.J. Single-molecule electrochemical gating in ionic liquids. J. Am. Chem. Soc. 2012, 134, 16817–16826. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445. [Google Scholar] [CrossRef]
- Aragonès, A.C.; Haworth, N.L.; Darwish, N.; Ciampi, S.; Bloomfield, N.J.; Wallace, G.G.; Diez-Perez, I.; Coote, M.L. Electrostatic catalysis of a Diels–Alder reaction. Nature 2016, 531, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, J.Q.; Wang, Y.H.; Su, J.Q.; Fu, J.Y.; Zou, J.W.; Zheng, J.F.; Shao, Y.; Zhou, X.S. Visualizing an electrochemically induced radical cation of bipyridine at Au(111)/ionic liquid interfaces toward a single-molecule switch. Anal. Chem. 2022, 94, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Wang, G.; Zhang, X.G.; Li, Z.H.; Wei, J.Y.; Si, Y.; Yang, Y.; Hong, W.; Tian, Z.Q. Single-molecule measurement of adsorption free energy at the solid–liquid interface. Angew. Chem. Int. Ed. 2019, 58, 14534–14538. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Zhou, Y.F.; Tong, L.; Huang, H.; Zheng, J.F.; Xie, W.; Chen, J.-Z.; Shao, Y.; Zhou, X.S. Revealing supramolecular interactions and electron transport in single molecular junctions of cucurbit[n]uril. Adv. Electron. Mater. 2021, 7, 2100399. [Google Scholar] [CrossRef]
- Venkataraman, L.; Klare, J.E.; Nuckolls, C.; Hybertsen, M.S.; Steigerwald, M.L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, L.; Liu, J.; Li, R.; Tang, C.; Hua, Y.; Chen, L.; Shi, J.; Yang, Y.; Liu, J.; et al. Modularized tuning of charge transport through highly twisted and localized single-molecule junctions. J. Phys. Chem. Lett. 2019, 10, 3453–3458. [Google Scholar] [CrossRef]
- Li, Z.; Smeu, M.; Ratner, M.A.; Borguet, E. Effect of anchoring groups on single molecule charge transport through porphyrins. J. Phys. Chem. C 2013, 117, 14890–14898. [Google Scholar] [CrossRef]
- Seng, J.W.; Tong, L.; Peng, X.Q.; Chang, W.Y.; Xie, W.; Wang, Y.H.; Zheng, J.F.; Shao, Y.; Chen, J.Z.; Jin, S.; et al. Influence of a coordinated metal center on charge transport through a Series of porphyrin molecular junctions. J. Phys. Chem. C 2022, 126, 1168–1175. [Google Scholar] [CrossRef]
- Pei, L.Q.; Horsley, J.R.; Seng, J.W.; Liu, X.; Yeoh, Y.Q.; Yu, M.-X.; Wu, X.H.; Abell, A.D.; Zheng, J.F.; Zhou, X.S.; et al. Mechanically induced switching between two discrete conductance states: A potential single-molecule variable resistor. ACS Appl. Mater. Interfaces 2021, 13, 57646–57653. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Chen, S.; Froehlich, T.; Yi, C.; Schönenberger, C.; Calame, M.; Decurtins, S.; Liu, S.X.; Borguet, E. Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling. J. Am. Chem. Soc. 2014, 136, 8867–8870. [Google Scholar] [CrossRef]
- Tam, E.S.; Parks, J.J.; Shum, W.W.; Zhong, Y.W.; Santiago-Berríos, M.E.B.; Zheng, X.; Yang, W.; Chan, G.K.L.; Abruña, H.D.; Ralph, D.C. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 2011, 5, 5115–5123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, R.J.; Higgins, S.J. Single molecule nanoelectrochemistry in electrical junctions. Acc. Chem. Res. 2016, 49, 2640–2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.P.; Chen, L.C.; Zhang, Z.Q.; Cao, J.J.; Tang, C.; Liu, J.Y.; Duan, L.L.; Huo, Y.; Shao, X.F.; Hong, W.J.; et al. Distinguishing diketopyrrolopyrrole isomers in single-molecule junctions via reversible stimuli-responsive quantum interference. J. Am. Chem. Soc. 2018, 140, 6531–6535. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.G.; Sangtarash, S.; Liu, Z.T.; Li, X.H.; Sadeghi, H.; Tan, Z.B.; Li, R.H.; Zheng, J.T.; Dong, X.B.; Liu, J.Y.; et al. Protonation tuning of quantum interference in azulene-type single-molecule junctions. Chem. Sci. 2017, 8, 7505–7509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Xu, B.; Tao, N. Conductance titration of single-peptide molecules. J. Am. Chem. Soc. 2004, 126, 5370–5371. [Google Scholar] [CrossRef]
- Villarroel-Lecourt, G.; Carrasco-Carvajal, J.; Andrade-Villalobos, F.; Solís-Egaña, F.; Merino-San Martín, I.; Robinson-Duggon, J.; Fuentealba, D. Encapsulation of chemotherapeutic drug melphalan in cucurbit[7]uril: Effects on its alkylating activity, hydrolysis, and cytotoxicity. ACS Omega 2018, 3, 8337–8343. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Liang, F.; Liu, S.; Im, J.; Li, Y.; Liu, J.; Zhang, B.; Zhou, J.; He, J.; Chang, S. Cucurbituril mediated single molecule detection and identification via recognition tunneling. Nanotechnology 2018, 29, 365501. [Google Scholar] [CrossRef]
- Darwish, N.; Aragonès, A.C.; Darwish, T.; Ciampi, S.; Díez-Pérez, I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett. 2014, 14, 7064–7070. [Google Scholar] [CrossRef]
- Audi, H.; Viero, Y.; Alwhaibi, N.; Chen, Z.; Iazykov, M.; Heynderickx, A.; Xiao, F.; Guérin, D.; Krzeminski, C.; Grace, I.M.; et al. Electrical molecular switch addressed by chemical stimuli. Nanoscale 2020, 12, 10127–10139. [Google Scholar] [CrossRef]
- Wu, C.; Alqahtani, A.; Sangtarash, S.; Vezzoli, A.; Sadeghi, H.; Robertson, C.M.; Cai, C.; Lambert, C.J.; Higgins, S.J.; Nichols, R.J. In situ formation of H-bonding imidazole chains in break-junction experiments. Nanoscale 2020, 12, 7914–7920. [Google Scholar] [CrossRef] [Green Version]
- Herrer, I.L.; Ismael, A.K.; Milán, D.C.; Vezzoli, A.; Martín, S.; González-Orive, A.; Grace, I.; Lambert, C.; Serrano, J.L.; Nichols, R.J.; et al. Unconventional single-molecule conductance behavior for a new heterocyclic anchoring group: Pyrazolyl. J. Phys. Chem. Lett. 2018, 9, 5364–5372. [Google Scholar] [CrossRef] [PubMed]
- Herrer, L.; Martín, S.; González-Orive, A.; Milan, D.C.; Vezzoli, A.; Nichols, R.J.; Serrano, J.L.; Cea, P. pH control of conductance in a pyrazolyl Langmuir–Blodgett monolayer. J. Mater. Chem. C 2021, 9, 2882–2889. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 2006, 128, 15874–15881. [Google Scholar] [CrossRef]
- Zhang, Z.; Imae, T. Hydrogen-bonding stabilized self-assembled monolayer film of a functionalized diacid, protoporphyrin IX Zinc(II), onto a gold surface. Nano Lett. 2001, 1, 241–243. [Google Scholar] [CrossRef]
- Ahn, S.; Aradhya, S.V.; Klausen, R.S.; Capozzi, B.; Roy, X.; Steigerwald, M.L.; Nuckolls, C.; Venkataraman, L. Electronic transport and mechanical stability of carboxyl linked single-molecule junctions. Phys. Chem. Chem. Phys. 2012, 14, 13841–13845. [Google Scholar] [CrossRef] [PubMed]
- Broussard, L.A.; Hammett-Stabler, C.A.; Winecker, R.E.; Ropero-Miller, J.D. The toxicology of mercury. Lab. Med. 2002, 33, 614–625. [Google Scholar] [CrossRef]
- Liu, J.; Qu, W.; Kadiiska, M.B. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharm. 2009, 238, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, T.W. The toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 1997, 34, 369–403. [Google Scholar] [CrossRef]
- Yin, J.; Wu, T.; Song, J.; Zhang, Q.; Liu, S.; Xu, R.; Duan, H. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem. Mater. 2011, 23, 4756–4764. [Google Scholar] [CrossRef]
- He, Q.; Miller, E.W.; Wong, A.P.; Chang, C.J. A selective fluorescent sensor for detecting lead in living cells. J. Am. Chem. Soc. 2006, 128, 9316–9317. [Google Scholar] [CrossRef]
- Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. A selective fluorescent sensor for imaging Cd2+ in living cells. J. Am. Chem. Soc. 2007, 129, 1500–1501. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Guan, X.; Wang, D.; Liu, S. Metal-chelating and dansyl-labeled poly(N-isopropylacrylamide) microgels as fluorescent Cu2+ sensors with thermo-enhanced detection sensitivity. Langmuir 2009, 25, 11367–11374. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Xu, B.; Tao, N. Changes in the conductance of single peptide molecules upon metal-ion binding. Angew. Chem. Int. Ed. 2004, 43, 6148–6152. [Google Scholar] [CrossRef]
- Das, B. Modeling selective single molecule sensors for transition metal ions. J. Phys. Chem. C 2009, 113, 16203–16209. [Google Scholar] [CrossRef]
- Liu, X.S.; Li, X.H.; Sangtarash, S.; Sadeghi, H.; Decurtins, S.; Haner, R.; Hong, W.J.; Lambert, C.J.; Liu, S.X. Probing Lewis acid-base interactions in single-molecule junctions. Nanoscale 2018, 10, 18131–18134. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, M. Nucleotides. Nutrition 1998, 14, 748–751. [Google Scholar] [CrossRef]
- Saenger, W. Structure and function of nucleosides and nucleotides. Angew. Chem. Int. Ed. 1973, 12, 591–601. [Google Scholar] [CrossRef]
- Grabow, W.W.; Jaeger, L. RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 2014, 47, 1871–1880. [Google Scholar] [CrossRef]
- Dulić, D.; Tuukkanen, S.; Chung, C.L.; Isambert, A.; Lavie, P.; Filoramo, A. Direct conductance measurements of short single DNA molecules in dry conditions. Nanotechnology 2009, 20, 115502. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, P.; Li, X.; Tao, N. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 2004, 4, 1105–1108. [Google Scholar] [CrossRef]
- Pattiya Arachchillage, K.G.G.; Chandra, S.; Piso, A.; Qattan, T.; Artes Vivancos, J.M. RNA biomolecular electronics: Towards new tools for biophysics and biomedicine. J. Mater. Chem. B 2021, 9, 6994–7006. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Artés, J.M.; Hihath, J. Long-range charge transport in adenine-stacked RNA: DNA hybrids. Small 2016, 12, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Harashima, T.; Fujii, S.; Jono, Y.; Terakawa, T.; Kurita, N.; Kaneko, S.; Kiguchi, M.; Nishino, T. Single-molecule junction spontaneously restored by DNA zipper. Nat. Commun. 2021, 12, 5762. [Google Scholar] [CrossRef] [PubMed]
- Artes, J.M.; Li, Y.H.; Qi, J.Q.; Anantram, M.P.; Hihath, J. Conformational gating of DNA conductance. Nat. Commun. 2015, 6, 8870. [Google Scholar] [CrossRef]
- Liu, H.; Yang, D.; Tian, Y.; Cheng, Y. Theoretical study on enhancement of DNA conductivity by copper modification of mismatched base pairs. J. Phys. Conf. Ser. 2019, 1324, 012058. [Google Scholar] [CrossRef]
- van Zalinge, H.; Schiffrin, D.J.; Bates, A.D.; Starikov, E.B.; Wenzel, W.; Nichols, R.J. Variable-temperature measurements of the single-molecule conductance of double-stranded DNA. Angew. Chem. Int. Ed. 2006, 45, 5499–5502. [Google Scholar] [CrossRef]
- Hihath, J.; Xu, B.; Zhang, P.; Tao, N. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. Proc. Natl. Acad. Sci. USA 2005, 102, 16979–16983. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Artés, J.M.; Qi, J.; Morelan, I.A.; Feldstein, P.; Anantram, M.P.; Hihath, J. Comparing charge transport in oligonucleotides: RNA:DNA hybrids and DNA duplexes. J. Phys. Chem. Lett. 2016, 7, 1888–1894. [Google Scholar] [CrossRef]
- Chandra, S.; Gunasinghe Pattiya Arachchillage, K.G.; Kliuchnikov, E.; Maksudov, F.; Ayoub, S.; Barsegov, V.; Artés Vivancos, J.M. Single-molecule conductance of double-stranded RNA oligonucleotides. Nanoscale 2022, 14, 2572–2577. [Google Scholar] [CrossRef]
- Ohshiro, T. Nanodevices for biological and medical applications: Development of single-molecule electrical measurement method. Appl. Sci. 2022, 12, 1539. [Google Scholar] [CrossRef]
- Guo, X.; Small, J.P.; Klare, J.E.; Wang, Y.; Purewal, M.S.; Tam, I.W.; Hong, B.H.; Caldwell, R.; Huang, L.; O’brien, S.; et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Dong, S.H.; Liu, S.; He, L.; Gan, L.; Yu, X.M.; Steigerwald, M.L.; Wu, X.S.; Liu, Z.F.; Guo, X.F. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 2012, 51, 12228–12232. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, Z.; Shamai, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.; Cheshnovsky, O.; Selzer, Y. Detection of heating in current-carrying molecular junctions by Raman scattering. Nat. Nanotechnol. 2008, 3, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Li, H.B.; Domulevicz, L.; Hihath, J. An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies. Adv. Funct. Mater. 2020, 30, 2000615. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, J.; Zhuo, Y.; Li, R.; Jin, X.; Yang, Y.; Chen, Z.B.; Shi, J.; Xiao, Z.; Hong, W.; et al. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci. 2018, 9, 5033–5038. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, S.; Montes, E.; Suzuki, S.; Fujii, S.; Nishino, T.; Tsukagoshi, K.; Ikeda, K.; Kano, H.; Nakamura, H.; Vázquez, H.; et al. Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies. Chem. Sci. 2019, 10, 6261–6269. [Google Scholar] [CrossRef] [Green Version]
Sensors | Single-Molecules | Detection Target | Principle | Detection | Ref. |
---|---|---|---|---|---|
pH detection | Dye molecules | pH = 5.5 or 13.6 | Change the hybridization of center C atom | Qualitative | [25] |
Cysteine peptides | pH = 6.9 or 2 | Protonation/deprotonation of the amine and carboxyl groups | Qualitative | [26] | |
Cucurbit[7]uril | pH = 1, 4, 7, 9 | Interaction of proton and carbonyl | Qualitative | [27] | |
Pyridine derivatives | No details | Protonation or deprotonation of N atom | Qualitative | [28] | |
Imidazole | pH = 3, 7, 9, 12 | Protonation or deprotonation of N atoms | Qualitative | [29] | |
4,4′-vinylenedipyridine | pH = 2.35,2.57, 2.85, 3.01, 3.26, 3.53 | Protonation or deprotonation of N atoms | Qualitative | [30] | |
4-(methylthio)benzoic acid | pH = 0~5 | Protonation or deprotonation of carboxylic acid | Quantitative | [31] | |
Ion detection | OPE molecule with 15-crown-5 ether or 18-crown-6 | metal ions (Li+, Na+, K+, or Rb+) | Host–guest interactions | Qualitative | [32] |
Dithienoborepin | fluoride ion | Lewis acid–base interactions of boron–fluoride | Qualitative | [33] | |
3,3′,5,5′-tetramethylbenzidine | Ag[I] (0.2 to 100 μM) | Redox reaction | Quantitative LOD = ∼34 aM | [34] | |
Genetic materials detection | DNA base pairs | hydrogen-bonding | DNA base pairs for detecting hydrogen-bonding | Qualitative | [35] |
4-mercaptobenzamide | DNA oligomers | Interaction of amino and carbonyl | Qualitative | [36] | |
mRNA from Escherichia coli | mRNA (from μM to aM) | Complementary base pairing | Quantitative LOD = ∼20 aM | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.-L.; Zeng, C.; Yu, Z.; Zheng, J.-F.; Wang, Y.-H.; Shao, Y.; Zhou, X.-S. Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements. Biosensors 2022, 12, 565. https://doi.org/10.3390/bios12080565
Lv S-L, Zeng C, Yu Z, Zheng J-F, Wang Y-H, Shao Y, Zhou X-S. Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements. Biosensors. 2022; 12(8):565. https://doi.org/10.3390/bios12080565
Chicago/Turabian StyleLv, Shan-Ling, Cong Zeng, Zhou Yu, Ju-Fang Zheng, Ya-Hao Wang, Yong Shao, and Xiao-Shun Zhou. 2022. "Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements" Biosensors 12, no. 8: 565. https://doi.org/10.3390/bios12080565
APA StyleLv, S. -L., Zeng, C., Yu, Z., Zheng, J. -F., Wang, Y. -H., Shao, Y., & Zhou, X. -S. (2022). Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements. Biosensors, 12(8), 565. https://doi.org/10.3390/bios12080565