Sensitivity Detection of Uric Acid and Creatinine in Human Urine Based on Nanoporous Gold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Electrodes
2.3. Analytical Procedure
3. Results and Discussion
3.1. Construction and Characterization of the NPG/GCE
3.2. Sensitivity Detection of Uric Acid by the NPG/GCE
3.2.1. The Detection Principle of Uric Acid by the NPG/GCE
3.2.2. The Electrochemical Detection of Uric Acid by the NPG/GCE
3.3. Sensitivity Detection of Creatinine by the NPG/GCE
3.3.1. The Detection Principle of Creatinine by the NPG/GCE
3.3.2. The Electrochemical Detection of Creatinine by the NPG/GCE
3.4. Anti-Interference and Application in Real Sample Detection of the NPG/GCE
3.4.1. Anti-Interference of Uric Acid Detection
3.4.2. Anti-Interference of Creatinine Detection
3.4.3. The Detection of Uric Acid in Human Urine
3.4.4. The Detection of Creatinine in Human Urine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.D. Simultaneous determination of creatine, uric acid, creatinine and hippuric acid in urine by high performance liquid chromatography. Biomed. Chromatogr. 1998, 12, 47–49. [Google Scholar] [PubMed]
- Hernandez-Ramirez, D.; Mendoza-Huizar, L.H.; Galan-Vidal, C.A.; Aguilar-Lira, G.Y.; Alvarez-Romero, G.A. Review-trends in the development of non-enzymatic electrochemical sensors modified with a metal-organic framework for quantification of uric acid. J. Electrochem. Soc. 2022, 169, 057522. [Google Scholar] [CrossRef]
- Roopa, R.A.; Mantelingu, K.; Guin, M.; Thimmaiah, S.B. Bienzymatic spectrophotometric method for uric acid estimation in human serum and urine. J. Anal. Chem. 2022, 77, 301–307. [Google Scholar] [CrossRef]
- Liu, J.; Xu, C.; Ying, L.; Zang, S.; Zhuang, Z.; Lv, H.; Yang, W.; Luo, Y.; Ma, X.; Wang, L.; et al. Relationship of serum uric acid level with non-alcoholic fatty liver disease and its inflammation progression in non-obese adults. Hepatol. Res. 2017, 47, E104–E112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perticone, M.; Tripepi, G.; Maio, R.; Cimellaro, A.; Addesi, D.; Baggetta, R.; Sciacqua, A.; Sesti, G.; Perticone, F. Risk reclassification ability of uric acid for cardiovascular outcomes in essential hypertension. Int. J. Cardiol. 2017, 243, 473–478. [Google Scholar] [CrossRef]
- Prasad, M.; Matteson, E.L.; Herrmann, J.; Gulati, R.; Rihal, C.S.; Lerman, L.O.; Lerman, A. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women. Hypertension 2017, 69, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Pellecchia, M.T.; Savastano, R.; Moccia, M.; Picillo, M.; Siano, P.; Erro, R.; Vallelunga, A.; Amboni, M.; Vitale, C.; Santangelo, G.; et al. Lower serum uric acid is associated with mild cognitive impairment in early Parkinson’s disease: A 4-year follow-up study. J. Neural Transm. 2016, 123, 1399–1402. [Google Scholar] [CrossRef]
- Kubota, Y.; McAdams-DeMarco, M.; Folsom, A.R. Serum uric acid, gout, and venous thromboembolism: The atherosclerosis risk in communities study. Thromb. Res. 2016, 144, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Kanbay, M.; Jensen, T.; Solak, Y.; Le, M.; Roncal-Jimenez, C.; Rivard, C.; Lanaspa, M.A.; Nakagawa, T.; Johnson, R.J. Uric acid in metabolic syndrome: From an innocent bystander to a central player. Eur. J. Intern. Med. 2016, 29, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D.; Wolf, A.; Mitschke, A.; Gutzki, F.M.; Will, W.; Bader, M. GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffe, HPLC and enzymatic assays. J. Chromatogr. B 2010, 878, 2582–2592. [Google Scholar] [CrossRef]
- Liotta, E.; Gottardo, R.; Bonizzato, L.; Pascali, J.P.; Bertaso, A.; Tagliaro, F. Rapid and direct determination of creatinine in urine using capillary zone electrophoresis. Clin. Chim. Acta 2009, 409, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Niesser, M.; Koletzko, B.; Peissner, W. Determination of creatinine in human Urine with flow injection tandem mass spectrometry. Ann. Nutr. Metab. 2012, 61, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Jaiwal, R.; Pundir, C.S. An improved amperometric creatinine biosensor based on nanoparticles of creatininase, creatinase and sarcosine oxidase. Anal. Biochem. 2017, 537, 41–49. [Google Scholar] [CrossRef]
- Sarkar, K. A Review on the development of spectroscopic sensors for the detection of creatinine in human blood serum. Int. J. Life Sci. Pharma Res. 2021, 11, 91–101. [Google Scholar] [CrossRef]
- Pundir, C.S.; Kumar, P.; Jaiwal, R. Biosensing methods for determination of creatinine: A review. Biosens. Bioelectron. 2019, 126, 707–724. [Google Scholar] [CrossRef] [PubMed]
- Talalak, K.; Noiphung, J.; Songjaroen, T.; Chailapakul, O.; Laiwattanapaisal, W. A facile low-cost enzymatic paper-based assay for the determination of urine creatinine. Talanta 2015, 144, 915–921. [Google Scholar] [CrossRef]
- Gamagedara, S.; Shi, H.; Ma, Y. Quantitative determination of taurine and related biomarkers in urine by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 763–770. [Google Scholar] [CrossRef]
- Magalhaes, J.; Machado, A. Array of potentiometric sensors for the analysis of creatinine in urine samples. Analyst 2002, 127, 1069–1075. [Google Scholar] [CrossRef]
- Income, K.; Ratnarathorn, N.; Khamchaiyo, N.; Srisuvo, C.; Ruckthong, L.; Dungchai, W. Disposable nonenzymatic uric acid and creatinine sensors using mu PAD coupled with screen-printed reduced graphene oxide-gold nanocomposites. Int. J. Anal. Chem. 2019, 2019, 3457247. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.; Seo, M.-H.; Bui The, H.; Quoc-Thai, P.; Conte, M.L.; Thangadurai, D.; Lee, Y.-I. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens. Bioelectron. 2016, 77, 359–365. [Google Scholar] [CrossRef]
- Pezzaniti, J.L.; Jeng, T.W.; McDowell, L.; Oosta, G.M. Preliminary investigation of near-infrared spectroscopic measurements of urea, creatinine, glucose, protein, and ketone in urine. Clin. Biochem. 2001, 34, 239–246. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Zinellu, E.; Chessa, R.; Deiana, L.; Carru, C. Assay for the simultaneous determination of guanidinoacetic acid, creatinine and creatine in plasma and urine by capillary electrophoresis UV-detection. J. Sep. Sci. 2006, 29, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Wang, C.; Zhou, J.; Sachdeva, A.; Ruelos, V.C. Simultaneous determination of creatinine and uric acid in human urine by High-Performance Liquid Chromatography. Anal. Sci. 2008, 24, 1589–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Ran, X.; Meng, L.; Li, L.; Mao, X. Simultaneous determination of creatine and uric acid in urine and serum samples by reversed-phase high performance liquid chromatographic method. Chin. J. Anal. Lab. 2014, 33, 638–641. [Google Scholar]
- Xing, X.; Shi, X.; Zhang, M.; Jin, W.; Ye, J. CE determination of creatinine and uric acid in saliva and urine during exercise. Chromatographia 2008, 67, 985–988. [Google Scholar] [CrossRef]
- See, H.H.; Schmidt-Marzinkowski, J.; Pormsila, W.; Morand, R.; Kraehenbuehl, S.; Hauser, P.C. Determination of creatine and phosphocreatine in muscle biopsy samples by capillary electrophoresis with contactless conductivity detection. Anal. Chim. Acta 2012, 727, 78–82. [Google Scholar] [CrossRef]
- Ma, Q.S.; Wang, Q.; Zhao, K.S.; Zhai, S.B.; Liu, S.; Liu, Z.Q. UPLC-MS/MS method for determination of uric acid and creatinine in serum and urine of hyperuricemic mice. Chem. J. Chin. Univ.-Chin. 2013, 34, 2716–2720. [Google Scholar]
- Wang, J.-M.; Chu, Y.; Li, W.; Wang, X.-Y.; Guo, J.-H.; Yan, L.-L.; Ma, X.-H.; Ma, Y.-L.; Yin, Q.-H.; Liu, C.-X. Simultaneous determination of creatine phosphate, creatine and 12 nucleotides in rat heart by LC-MS/MS. J. Chromatogr. B 2014, 958, 96–101. [Google Scholar] [CrossRef]
- Tang, J.; Hui, Z.Z.; Hu, T.; Cheng, X.; Guo, J.H.; Li, Z.R.; Yu, H. A sensitive acetaminophen sensor based on Co metal-organic framework (ZIF-67) and macroporous carbon composite. Rare Met. 2022, 41, 189–198. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Li, Z.; Zhai, C.-Y.; Wang, J.-F.; Zeng, L.-X.; Zhu, M.-S. Plasmonic photo-assisted electrochemical sensor for detection of trace lead ions based on Au anchored on two-dimensional g-C3N4/graphene nanosheets. Rare Met. 2021, 40, 1727–1737. [Google Scholar] [CrossRef]
- Adeosun, W.A.; Asiri, A.M.; Marwani, H.M.; Rahman, M.M. Enzymeless electrocatalytic detection of uric acid using polydopamine/polypyrrole copolymeric film. ChemistrySelect 2020, 5, 156–164. [Google Scholar] [CrossRef] [Green Version]
- de Araujo, W.R.; Salles, M.O.; Paixao, T.R.L.C. Development of an enzymeless electroanalytical method for the indirect detection of creatinine in urine samples. Sens. Actuator B-Chem. 2012, 173, 847–851. [Google Scholar] [CrossRef]
- Stefan, R.I.; Bokretsion, R.G. Determination of creatine and creatinine using a diamond paste based electrode. Instrum. Sci. Technol. 2003, 31, 183–188. [Google Scholar] [CrossRef]
- Jayasekhar Babu, P.; Tirkey, A.; Mohan Rao, T.J.; Chanu, N.B.; Lalchhandama, K.; Singh, Y.D. Conventional and nanotechnology based sensors for creatinine (A kidney biomarker) detection: A consolidated review. Anal. Biochem. 2022, 645, 114622. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.J.; Li, X.; Xu, H.T.; Zhang, H.J.; Wang, Y. Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C 2014, 2, 9788–9799. [Google Scholar] [CrossRef]
- Li, X.; Xing, Y.; Xu, Y.; Deng, Q.; Zhang, K.; Shao, L.-H. Hierarchical nanoporous carbon templated and catalyzed by the bicontinuous nanoporous copper for high performance electrochemical capacitors. ChemistrySelect 2019, 4, 6437–6444. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, T.; Ma, X.; Shen, Y.; Deng, Q.; Zhang, W.; Zhao, Y. Hydrogen production from urea sewage on NiFe-based porous electrocatalysts. ACS Sustain. Chem. Eng. 2020, 8, 11007–11015. [Google Scholar] [CrossRef]
- Han, Z.; Qi, Z.; Wei, Q.; Deng, Q.; Wang, K. The mechanical effect of MnO2 layers on electrochemical actuation performance of nanoporous gold. Nanomaterials 2020, 10, 2056. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, M.W. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009, 34, 569–576. [Google Scholar] [CrossRef]
- Wang, K.; Ding, Y. Carbon-free nanoporous gold based membrane electrocatalysts for fuel cells. Prog. Nat. Sci. 2020, 30, 775–786. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, Y. Nanoporous metals for heterogeneous catalysis: Following the success of raney nickel. Chem.-Eur. J. 2020, 26, 8845–8856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ding, Y. Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Technol. 2013, 3, 2862–2868. [Google Scholar] [CrossRef]
- Xiao, S.; Shang, K.S.; Li, W.J.; Wang, X. An efficient biosensor based on the synergistic catalysis of Helicobacter pylori urease b subunit and nanoplatinum for urease inhibitors screening and antagonistic mechanism analyzing. Sens. Actuator B-Chem. 2022, 355, 131284. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Zhang, X.; Wang, H.; Xia, T.; Bian, C.; Liang, S.; Tang, X.; Wang, X. Electrochemical immunosensor for HBe antigen detection based on a signal amplification strategy: The co-catalysis of horseradish peroxidase and nanoporous gold. Sens. Actuators B-Chem. 2019, 284, 296–304. [Google Scholar] [CrossRef]
- Lakshmi, D.; Whitcombe, M.J.; Davis, F.; Sharma, P.S.; Prasad, B.B. Electrochemical dtection of uric acid in mixed and clinical samples: A Review. Electroanalysis 2011, 23, 305–320. [Google Scholar] [CrossRef]
- Reddy, Y.V.M.; Sravani, B.; Agarwal, S.; Gupta, V.K.; Madhavi, G. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode. J. Electroanal. Chem. 2018, 820, 168–175. [Google Scholar] [CrossRef]
- Abrori, S.A.; Septiani, N.L.W.; Hakim, F.N.; Maulana, A.; Suyatman; Nugraha; Anshori, I.; Yuliarto, B. Non-enzymatic electrochemical detection for uric acid based on a glassy carbon electrode modified with MOF-71. IEEE Sens. J. 2021, 21, 170–177. [Google Scholar]
- Mei, L.P.; Feng, J.J.; Wu, L.; Chen, J.R.; Shen, L.; Xie, Y.; Wang, A.J. A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim. Acta 2016, 183, 2039–2046. [Google Scholar] [CrossRef]
- Chen, J.; He, P.; Bai, H.; He, S.; Zhang, T.; Zhang, X.; Dong, F. Poly(beta-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sens. Actuator B-Chem. 2017, 252, 9–16. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.C.; Ma, L.X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuator B-Chem. 2016, 227, 488–496. [Google Scholar] [CrossRef]
- Rezaei, R.; Foroughi, M.M.; Beitollahi, H.; Alizadeh, R. Electrochemical sensing of uric acid using a ZnO/graphene nanocomposite modified graphite screen Printed electrode. Russ. J. Electrochem. 2018, 54, 860–866. [Google Scholar] [CrossRef]
- Hussain, I.; Tariq, M.I.; Siddiqui, H.L. Structure elucidation of chromogen resulting from Jaffe’s reaction. J. Chem. Soc. Pak. 2009, 31, 937–948. [Google Scholar]
- Wang, Y.; Cao, W.; Wang, L.; Zhuang, Q.; Ni, Y. Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide. Microchim. Acta 2018, 185, 315. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, J.; Resmi, P.E.; Ramachandran, T.; Nair, B.G.; Babu, T.G.S. Fabrication of a disposable non-enzymatic electrochemical creatinine sensor. Sens. Actuator B-Chem. 2017, 243, 589–595. [Google Scholar] [CrossRef]
- Chen, P.; Peng, Y.; He, M.; Yan, X.-C.; Zhang, Y.; Liu, Y.-N. Sensitive electrochemical detection of creatinine at disposable screen-printed carbon electrode mixed with ferrocenemethanol. Int. J. Electrochem. Sci. 2013, 8, 8931–8939. [Google Scholar]
- Gao, X.H.; Gui, R.J.; Guo, H.J.; Wang, Z.H.; Liu, Q.Y. Creatinine-induced specific signal responses and enzymeless ratiometric electrochemical detection based on copper nanoparticles electrodeposited on reduced graphene oxide-based hybrids. Sens. Actuator B-Chem. 2019, 285, 201–208. [Google Scholar] [CrossRef]
- Chakraborty, T.; Das, M.; Lin, C.Y.; Su, Y.; Yuan, B.; Kao, C.H. ZIF-8 Nanoparticles based electrochemical sensor for non-enzymatic creatinine detection. Membranes 2022, 12, 159. [Google Scholar] [CrossRef]
Urine Samples | Detected by NPG/GCE (mM) | Detected by HPLC (mM) | Deviation Rate (%) | Spiked of Uric Acid (mM) | Detected by NPG/GCE (mM) | Recovery Rate (%) |
---|---|---|---|---|---|---|
1 | 1.17 ± 0.02 | 1.11 ± 0.03 | 5.40 | 1.0 | 2.24 ± 0.16 | 107.00 |
2.0 | 3.26 ± 0.03 | 104.50 | ||||
5.0 | 5.93 ± 0.10 | 95.20 | ||||
2 | 1.92 ± 0.04 | 2.14 ± 0.08 | −10.28 | 1.0 | 3.04 ± 0.20 | 112.00 |
2.0 | 4.28 ± 0.01 | 118.00 | ||||
5.0 | 6.92 ± 0.22 | 100.00 | ||||
3 | 0.95 ± 0.01 | 0.90 ± 0.01 | 5.56 | 1.0 | 2.03 ± 0.04 | 108.00 |
2.0 | 2.89 ± 0.12 | 97.00 | ||||
5.0 | 5.40 ± 0.28 | 89.00 |
Urine Samples | Detected by NPG/GCE (mM) | Detected by HPLC (mM) | Deviation Rate (%) | Spiked of Creatinine (mM) | Detected by NPG/GCE (mM) | Recovery Rate (%) |
---|---|---|---|---|---|---|
1 | 7.65 ± 0.61 | 7.42 ± 0.12 | 3.09 | 2.0 | 9.78 ± 0.23 | 106.50 |
5.0 | 12.77 ± 0.96 | 102.40 | ||||
10.0 | 17.71 ± 1.65 | 100.60 | ||||
2 | 5.58 ± 0.08 | 5.66 ± 0.11 | −1.41 | 2.0 | 7.75 ± 0.41 | 108.50 |
5.0 | 11.45 ± 0.77 | 117.40 | ||||
10.0 | 14.96 ± 0.90 | 93.80 | ||||
3 | 4.60 ± 0.74 | 4.80 ± 0.04 | −4.17 | 2.0 | 6.45 ± 0.49 | 92.50 |
5.0 | 10.02 ± 0.82 | 108.40 | ||||
10.0 | 15.00 ± 0.49 | 104.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, K.; Wang, S.; Chen, S.; Wang, X. Sensitivity Detection of Uric Acid and Creatinine in Human Urine Based on Nanoporous Gold. Biosensors 2022, 12, 588. https://doi.org/10.3390/bios12080588
Shang K, Wang S, Chen S, Wang X. Sensitivity Detection of Uric Acid and Creatinine in Human Urine Based on Nanoporous Gold. Biosensors. 2022; 12(8):588. https://doi.org/10.3390/bios12080588
Chicago/Turabian StyleShang, Keshuai, Shuangjue Wang, Siyu Chen, and Xia Wang. 2022. "Sensitivity Detection of Uric Acid and Creatinine in Human Urine Based on Nanoporous Gold" Biosensors 12, no. 8: 588. https://doi.org/10.3390/bios12080588
APA StyleShang, K., Wang, S., Chen, S., & Wang, X. (2022). Sensitivity Detection of Uric Acid and Creatinine in Human Urine Based on Nanoporous Gold. Biosensors, 12(8), 588. https://doi.org/10.3390/bios12080588