Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection
Abstract
:1. Introduction
2. Design Methodology
2.1. Sensor Structural Design
2.2. Mathematical Modeling
2.3. Numerical Modeling
2.4. Electric Field Analysis and Penetration Depth Calculation
2.5. Practical Fabrication Process
3. Material Impacts on the Proposed Biosensor
3.1. Impact of Material Layers on Sensitivity
3.2. Gold (Au) Thickness Effect on Sensitivity
3.3. Effect of the Graphene Layer on Sensitivity
4. Results and Analysis (Cancer Detection)
5. Wide Range of Biological Solution Detections and Sensor Linearity
6. Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer. Available online: http://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 5 May 2021).
- Pourmadadi, M.; Dinani, H.S.; Tabar, F.S.; Khassi, K.; Janfaza, S.; Tasnim, N.; Hoorfar, M. Properties and Applications of Graphene and Its Derivatives in Biosensors for Cancer Detection: A Comprehensive Review. Biosensors 2022, 12, 269. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kumar, S.; Kaushik, B.K. 2D Materials-Based Fiber Optic SPR Biosensor for Cancer Detection at 1550 nm. IEEE Sens. J. 2021, 21, 23957–23964. [Google Scholar] [CrossRef]
- Camerlingo, C.; Verde, A.; Manti, L.; Meschini, R.; Delfino, I.; Lepore, M. Graphene-Based Raman Spectroscopy for pH Sensing of X-rays Exposed and Unexposed Culture Media and Cells. Sensors 2018, 18, 2242. [Google Scholar] [CrossRef] [Green Version]
- Cancer Reasearch UK. Why Is Early Diagnosis Important? Available online: https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-important (accessed on 5 May 2021).
- Ott, J.; Ullrich, A.; Miller, A. The importance of early symptom recognition in the context of early detection and cancer survival. Eur. J. Cancer 2009, 45, 2743–2748. [Google Scholar] [CrossRef] [PubMed]
- Bijalwan, A.; Singh, B.K.; Rastogi, V. Surface Plasmon Resonance-Based Sensors Using Nano-Ribbons of Graphene and WSe2. Plasmonics 2020, 15, 1015–1023. [Google Scholar] [CrossRef]
- Li, X. Dynamic changes of driver genes’ mutations across clinical stages in nine cancer types. Cancer Med. 2016, 5, 1556–1565. [Google Scholar] [CrossRef]
- Lazcka, O.; Del Campo, F.J.; Muñoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef]
- Baxter, J. Glucose detection. Nat. Photonics 2012, 6, 268–269. [Google Scholar] [CrossRef]
- Pan, C.; Guo, M.; Nie, Z.; Xiao, X.; Yao, S. Aptamer-Based Electrochemical Sensor for Label-Free Recognition and Detection of Cancer Cells. Electroanalysis 2009, 21, 1321–1326. [Google Scholar] [CrossRef]
- Li, T.; Fan, Q.; Liu, T.; Zhu, X.; Zhao, J.; Li, G. Detection of breast cancer cells specially and accurately by an electrochemical method. Biosens. Bioelectron. 2010, 25, 2686–2689. [Google Scholar] [CrossRef]
- Benoy, I.H.; Elst, H.; Van Der Auwera, I.; Van Laere, S.; Van Dam, P.; Van Marck, E.; Scharpé, S.; Vermeulen, P.B.; Dirix, L.Y. Real-time RT–PCR correlates with immunocytochemistry for the detection of disseminated epithelial cells in bone marrow aspirates of patients with breast cancer. Br. J. Cancer 2004, 91, 1813–1820. [Google Scholar] [CrossRef] [Green Version]
- Li, F.-R.; Li, Q.; Zhou, H.-X.; Qi, H.; Deng, C.-Y. Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-RT-PCR. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Hajba, L.; Guttman, A. Circulating tumor-cell detection and capture using microfluidic devices. TrAC Trends Anal. Chem. 2014, 59, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Amin, R.; Knowlton, S.; Hart, A.; Yenilmez, B.; Ghaderinezhad, F.; Katebifar, S.; Messina, M.; Khademhosseini, A.; Tasoglu, S. 3D-printed microfluidic devices. Biofabrication 2016, 8, 022001. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, U.; Clement, J.H.; Bocklitz, T.; Krafft, C.; Popp, J. Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J. Biophotonics 2010, 3, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Tolstik, T.; Marquardt, C.; Matthäus, C.; Bergner, N.; Bielecki, C.; Krafft, C.; Stallmach, A.; Popp, J. Discrimination and classification of liver cancer cells and proliferation states by Raman spectroscopic imaging. Analyst 2014, 139, 6036–6043. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, L.; Li, S.; Qi, R.; Chen, X.; Li, W. Highly sensitive refractive index detection based on compact HSC-SPR structure in a microfluidic chip. Sens. Actuators A Phys. 2019, 297, 111558. [Google Scholar] [CrossRef]
- Hsieh, H.-Y.; Luo, J.-X.; Shen, Y.-H.; Lo, S.-C.; Hsu, Y.-C.; Tahara, H.; Fan, Y.-J.; Wei, P.-K.; Sheen, H.-J. A nanofluidic preconcentrator integrated with an aluminum-based nanoplasmonic sensor for Epstein-Barr virus detection. Sens. Actuators B Chem. 2021, 355, 131327. [Google Scholar] [CrossRef]
- Hsieh, H.-Y.; Chang, R.; Huang, Y.-Y.; Juan, P.-H.; Tahara, H.; Lee, K.-Y.; Vo, D.N.K.; Tsai, M.-H.; Wei, P.-K.; Sheen, H.-J.; et al. Continuous polymerase chain reaction microfluidics integrated with a gold-capped nanoslit sensing chip for Epstein-Barr virus detection. Biosens. Bioelectron. 2021, 195, 113672. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Hsieh, H.-Y.; Kuo, W.-C.; Wei, P.-K.; Sheen, H.-J.; Tahara, H.; Chiu, T.-W.; Fan, Y.-J. Nanoplasmonic Structure of a Polycarbonate Substrate Integrated with Parallel Microchannels for Label-Free Multiplex Detection. Polymers 2021, 13, 3294. [Google Scholar] [CrossRef]
- Miyazaki, C.M.; Kinahan, D.J.; Mishra, R.; Mangwanya, F.; Kilcawley, N.; Ferreira, M.; Ducrée, J. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform. Biosens. Bioelectron. 2018, 119, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Ran, Y.; Wang, G. Label-Free Detection of Cancer Biomarkers Using an In-Line Taper Fiber-Optic Interferometer and a Fiber Bragg Grating. Sensors 2017, 17, 2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2013–2015). Anal. Chem. 2016, 88, 203–227. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, K.; Obaidat, M.S.; Mostufa, S.; Paul, A.K. Design and analysis of a multi-core whispering gallery mode bio-sensor for detecting cancer cells and diabetes tear cells. OSA Contin. 2021, 4, 2294–2307. [Google Scholar] [CrossRef]
- Mostufa, S.; Akib, T.B.A.; Rana, M.; Mehedi, I.M.; Al-Saggaf, U.M.; Alsaggaf, A.U.; Alsaggaf, M.U.; Alam, S. Numerical approach to design the graphene-based multilayered surface plasmon resonance biosensor for the rapid detection of the novel coronavirus. Opt. Contin. 2022, 1, 494. [Google Scholar] [CrossRef]
- Dutta, P.; Su, T.-Y.; Fu, A.-Y.; Chang, M.-C.; Guo, Y.-J.; Tsai, I.-J.; Wei, P.-K.; Chang, Y.-S.; Lin, C.-Y.; Fan, Y.-J. Combining portable solar-powered centrifuge to nanoplasmonic sensing chip with smartphone reader for rheumatoid arthritis detection. Chem. Eng. J. 2021, 434, 133864. [Google Scholar] [CrossRef]
- Lee, K.-L.; Chen, P.-W.; Wu, S.-H.; Huang, J.-B.; Yang, S.-Y.; Wei, P.-K. Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films. ACS Nano 2012, 6, 2931–2939. [Google Scholar] [CrossRef]
- Yasli, A. Cancer Detection with Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor. Plasmonics 2021, 16, 1605–1612. [Google Scholar] [CrossRef]
- Chopra, H.; Kaler, R.S.; Painam, B. Photonic crystal waveguide-based biosensor for detection of diseases. J. Nanophotonics 2016, 10, 036011. [Google Scholar] [CrossRef]
- Sani, M.H.; Khosroabadi, S. A Novel Design and Analysis of High-Sensitivity Biosensor Based on Nano-Cavity for Detection of Blood Component, Diabetes, Cancer and Glucose Concentration. IEEE Sens. J. 2020, 20, 7161–7168. [Google Scholar] [CrossRef]
- Mollah, M.A.; Yousufali, M.; Ankan, I.M.; Rahman, M.M.; Sarker, H.; Chakrabarti, K. Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio-Sens. Res. 2020, 29, 100344. [Google Scholar] [CrossRef]
- Yaroslavsky, A.N.; Patel, R.; Salomatina, E.; Li, C.; Lin, C.; Al-Arashi, M.; Neel, V. High-contrast mapping of basal cell carcinomas. Opt. Lett. 2012, 37, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Martines-Arano, H.; Palacios-Barreto, S.; Castillo-Cruz, J.; Meda-Campaña, J.A.; García-Pérez, B.E.; Torres-Torres, C. Fractional Photodamage Triggered by Chaotic Attractors in Human Lung Epithelial Cancer Cells. Int. J. Therm. Sci. 2022, 181, 107734. [Google Scholar] [CrossRef]
- Hossain, B.; Paul, A.K.; Islam, A.; Rahman, M.; Sarkar, A.K.; Abdulrazak, L.F. A highly sensitive surface plasmon resonance biosensor using SnSe allotrope and heterostructure of BlueP/MoS2 for cancerous cell detection. Optik 2021, 252, 168506. [Google Scholar] [CrossRef]
- Song, B.; Li, D.; Qi, W.; Elstner, M.; Fan, C.; Fang, H. Graphene on Au(111): A Highly Conductive Material with Excellent Adsorption Properties for High-Resolution Bio/Nanodetection and Identification. ChemPhysChem 2010, 11, 585–589. [Google Scholar] [CrossRef]
- Artiles, M.S.; Rout, C.S.; Fisher, T.S. Graphene-based hybrid materials and devices for biosensing. Adv. Drug Deliv. Rev. 2011, 63, 1352–1360. [Google Scholar] [CrossRef]
- Banerjee, A.N. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 2018, 8, 20170056. [Google Scholar] [CrossRef]
- Maharana, P.K.; Jha, R. Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sens. Actuators B Chem. 2012, 169, 161–166. [Google Scholar] [CrossRef]
- Lou, J.; Cheng, T.; Li, S.; Zhang, X. Surface plasmon resonance photonic crystal fiber biosensor based on gold-graphene layers. Opt. Fiber Technol. 2019, 50, 206–211. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, C.; Du, D.; Zhu, J.; Lin, Y. Graphene-like two-dimensional layered nanomaterials: Applications in biosensors and nanomedicine. Nanoscale 2015, 7, 14217–14231. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; Macmillan Publishers Ltd.: London, UK; World Scientific Pub. Co.: Singapore, 2009; pp. 11–19. ISBN 9789814287005. [Google Scholar]
- Han, Q.; Pang, J.; Li, Y.; Sun, B.; Ibarlucea, B.; Liu, X.; Gemming, T.; Cheng, Q.; Zhang, S.; Liu, H.; et al. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens. 2021, 6, 3841–3881. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Rana, M.; Rahman, S.; Anower, M.; Mollah, A.; Paul, A.K. Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt. Mater. 2020, 107, 110123. [Google Scholar] [CrossRef]
- Akib, T.; Mou, S.; Rahman, M.; Rana, M.; Islam, R.; Mehedi, I.; Mahmud, M.; Kouzani, A. Design and Numerical Analysis of a Graphene-Coated SPR Biosensor for Rapid Detection of the Novel Coronavirus. Sensors 2021, 21, 3491. [Google Scholar] [CrossRef]
- Aouani, H.; Wenger, J.; Gérard, D.; Rigneault, H.; Devaux, E.; Ebbesen, T.W.; Mahdavi, F.; Xu, T.; Blair, S. Crucial Role of the Adhesion Layer on the Plasmonic Fluorescence Enhancement. ACS Nano 2009, 3, 2043–2048. [Google Scholar] [CrossRef]
- Panda, A.; Pukhrambam, P.D. Modeling of High-Performance SPR Refractive Index Sensor Employing Novel 2D Materials for Detection of Malaria Pathogens. IEEE Trans. Nanobiosci. 2021, 21, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, M.; Liu, K.; Jiang, J.; Zhao, Y.; Ma, J.; Liu, T. The effect of the TiO2 film on the performance of the optical fiber SPR sensor. Opt. Commun. 2019, 448, 93–97. [Google Scholar] [CrossRef]
- Shingh, S.; Prajapati, Y. TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement. Optik 2020, 224, 165525. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mishra, S.K.; Verma, R.K. Graphene and Beyond Graphene MoS2: A New Window in Surface-Plasmon-Resonance-Based Fiber Optic Sensing. J. Phys. Chem. C 2016, 120, 2893–2900. [Google Scholar] [CrossRef]
- Dey, B.; Islam, S.; Park, J. Numerical design of high-performance WS2/metal/WS2/graphene heterostructure based surface plasmon resonance refractive index sensor. Results Phys. 2021, 23, 104021. [Google Scholar] [CrossRef]
- Bruna, M.; Borini, S.M. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94, 031901. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Azab, M.Y.; Hameed, M.F.O.; Nasr, A.M.; Obayya, S.S.A. Highly Sensitive Metamaterial Biosensor for Cancer Early Detection. IEEE Sens. J. 2021, 21, 7748–7755. [Google Scholar] [CrossRef]
- Ramola, A.; Marwaha, A.; Singh, S. Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A 2021, 127, 643. [Google Scholar] [CrossRef]
- Ayyanar, N.; Raja, G.T.; Sharma, M.; Kumar, D.S. Photonic Crystal Fiber-Based Refractive Index Sensor for Early Detection of Cancer. IEEE Sens. J. 2018, 18, 7093–7099. [Google Scholar] [CrossRef]
- Kalogianni, D.P. Nanotechnology in emerging liquid biopsy applications. Nano Converg. 2021, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, J.; He, H.; Ma, C.; Wang, K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coord. Chem. Rev. 2020, 415, 213317. [Google Scholar] [CrossRef]
- Saha, N.; Brunetti, G.; Kumar, A.; Armenise, M.N.; Ciminelli, C. Highly Sensitive Refractive Index Sensor Based on Polymer Bragg Grating: A Case Study on Extracellular Vesicles Detection. Biosensors 2022, 12, 415. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 2011, 5, 571–606. [Google Scholar] [CrossRef]
- Kim, S.-H.; Koh, K. Functional dyes for surface plasmon resonance-based sensing system. In Functional Dyes; Elsevier: Edinburgh, UK, 2006; pp. 185–213. ISBN 9780444521767. [Google Scholar]
- Mostufa, S.; Paul, A.K.; Chakrabarti, K. Detection of hemoglobin in blood and urine glucose level samples using a graphene-coated SPR based biosensor. OSA Contin. 2021, 4, 2164–2176. [Google Scholar] [CrossRef]
- Rikta, K.; Anower, M.; Rahman, M.S. SPR biosensor using SnSe-phosphorene heterostructure. Sens. Bio-Sens. Res. 2021, 33, 100442. [Google Scholar] [CrossRef]
- Hossain, B.; Tasnim, T.; Abdulrazak, L.F.; Rana, M.; Islam, R. A Numerical Approach to Design the Kretschmann Configuration Based Refractive Index Graphene-MoS2 Hybrid Layers with TiO2-SiO2 Nano for Formalin Detection. Photonics Sens. 2019, 10, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Hossain, B.; Mehedi, I.M.; Moznuzzaman, M.; Abdulrazak, L.F.; Hossain, A. High performance refractive index SPR sensor modeling employing graphene tri sheets. Results Phys. 2019, 15, 102719. [Google Scholar] [CrossRef]
- Basak, C.; Hosain, K.; Sazzad, A.A. Design and Simulation of a High Sensitive Surface Plasmon Resonance Biosensor for Detection of Biomolecules. Sens. Imaging 2020, 21, 2. [Google Scholar] [CrossRef]
- Rahman, M.; Abdulrazak, L.F.; Ahsan, M.; Based, A.; Rana, M.; Anower, S.; Rikta, K.A.; Haider, J.; Gurusamy, S. 2D Nanomaterial-Based Hybrid Structured (Au-WSe2-PtSe2-BP) Surface Plasmon Resonance (SPR) Sensor with Improved Performance. IEEE Access 2022, 10, 689–698. [Google Scholar] [CrossRef]
- Maurya, J.B.; François, A.; Prajapati, Y.K. Two-Dimensional Layered Nanomaterial-Based One-Dimensional Photonic Crystal Refractive Index Sensor. Sensors 2018, 18, 857. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.-Q.; Meng, X.-M.; Coquet, P.; Yong, K.-T. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Yadav, B.C.; Pandey, N.K.; Srivastava, A.K.; Sharma, P. Optical humidity sensors based on titania films fabricated by sol–gel and thermal evaporation methods. Meas. Sci. Technol. 2007, 18, 260–264. [Google Scholar] [CrossRef]
- Nguyen-Phan, T.-D.; Pham, V.H.; Cuong, T.V.; Hahn, S.H.; Kim, E.J.; Chung, J.S.; Hur, S.H.; Shin, E.W. Fabrication of TiO2 nanostructured films by spray deposition with high photocatalytic activity of methylene blue. Mater. Lett. 2010, 64, 1387–1390. [Google Scholar] [CrossRef]
- Jussila, H.; Yang, H.; Granqvist, N.; Sun, Z. Surface plasmon resonance for characterization of large-area atomic-layer graphene film. Optica 2016, 3, 151–158. [Google Scholar] [CrossRef]
- Ye, S.; Oh, W.-C. Demonstration of enhanced the photocatalytic effect with PtSe2 and TiO2 treated large area graphene obtained by CVD method. Mater. Sci. Semicond. Process. 2016, 48, 106–114. [Google Scholar] [CrossRef]
- Yang, X.; Peng, H.; Xie, Q.; Zhou, Y.; Liu, Z. Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. J. Electroanal. Chem. 2013, 688, 243–248. [Google Scholar] [CrossRef]
- Van Ngoc, H.; Qian, Y.; Kil Han, S.; Kang, D.J. PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method. Sci. Rep. 2016, 6, 33096. [Google Scholar] [CrossRef] [Green Version]
- Sattar, S.; Schwingenschlogl, U. Electronic Properties of Graphene–PtSe2 Contacts. ACS Appl. Mater. Interfaces 2017, 9, 15809–15813. [Google Scholar] [CrossRef]
- Gong, W.; Jiang, S.; Li, Z.; Li, C.; Xu, J.; Pan, J.; Huo, Y.; Man, B.; Liu, A.; Zhang, C. Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. Opt. Express 2019, 27, 3483–3495. [Google Scholar] [CrossRef]
- Verma, A.; Prakash, A.; Tripathi, R. Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 2015, 357, 106–112. [Google Scholar] [CrossRef]
- Paul, A.K.; Sarkar, A.K.; Rahman, A.B.S.; Khaleque, A. Twin Core Photonic Crystal Fiber Plasmonic Refractive Index Sensor. IEEE Sens. J. 2018, 18, 5761–5769. [Google Scholar] [CrossRef]
- Hossain, B.; Kabir, A.; Hossain, S.; Islam, K.Z.; Hossain, S.; Pathan, M.I.; Mondol, N.; Abdulrazak, L.F.; Hossain, A.; Rana, M. Numerical modeling of MoS2–graphene bilayer-based high-performance surface plasmon resonance sensor: Structure optimization for DNA hybridization. Opt. Eng. 2020, 59, 105105. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, S.; Lin, C. Sensitivity Improvement of a Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials Hybrid Structure in Visible Region: A Theoretical Study. Sensors 2020, 20, 2445. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pal, S.; Prajapati, Y.K.; Kumar, S.; Saini, J.P. Sensitivity Improvement of a MXene- Immobilized SPR Sensor With Ga-Doped-ZnO for Biomolecules Detection. IEEE Sens. J. 2022, 22, 6536–6543. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, S.; Prajapati, Y.; Saini, J. Sensitivity Enhancement of MXene Based SPR Sensor Using Silicon: Theoretical Analysis. Silicon 2021, 13, 1887–1894. [Google Scholar] [CrossRef]
- Hossain, B.; Kabir, A.; Rahman, M.; Roy, S.; Abdulrazak, L.F.; Hossain, S.; Mondol, N.; Rahman, M.H.; Islam, K.Z.; Pathan, M.I. Hybrid structure based high performance SPR sensor: A numerical approach of structure optimization for DNA hybridization. Opt. Quantum Electron. 2021, 53, 24. [Google Scholar] [CrossRef]
- Jia, Y.; Liao, Y.; Cai, H. Sensitivity Improvement of Surface Plasmon Resonance Biosensors with GeS-Metal Layers. Electronics 2022, 11, 332. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt. Lett. 2012, 37, 1175–1177. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Satish, L.; Kushmaro, A.; Shvalya, V.; Cvelbar, U.; Abdulhalim, I. Engineering the penetration depth of nearly guided wave surface plasmon resonance towards application in bacterial cells monitoring. Sens. Actuators B Chem. 2021, 345, 130338. [Google Scholar] [CrossRef]
- Xu, Y.; Hsieh, C.-Y.; Wu, L.; Ang, L.-K. Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. J. Phys. D: Appl. Phys. 2019, 52, 065101. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wu, L.; Ang, L.K. MoS2-Based Highly Sensitive Near-Infrared Surface Plasmon Resonance Refractive Index Sensor. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Maharana, P.K.; Jha, R.; Padhy, P. On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared. Sens. Actuators B Chem. 2015, 207, 117–122. [Google Scholar] [CrossRef]
- Homola, J.; Koudela, I.; Yee, S.S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison. Sens. Actuators B Chem. 1999, 54, 16–24. [Google Scholar] [CrossRef]
- Nenninger, G.; Tobiška, P.; Homola, J.; Yee, S. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sens. Actuators B Chem. 2001, 74, 145–151. [Google Scholar] [CrossRef]
- Slavík, R.; Homola, J. Ultrahigh resolution long range surface plasmon-based sensor. Sens. Actuators B Chem. 2007, 123, 10–12. [Google Scholar] [CrossRef]
Layer | Material | Refractive Index | Thickness | Ref |
---|---|---|---|---|
1st layer | ) | 1.5151 | [46] | |
2nd layer | 1.99 | [49] | ||
3rd layer | Gold (Au) | 0.13783 + 3.6196 × i | 50 nm | [46,53] |
4th layer | Graphene (monolayer) | 3 + 1.1491 × i | [46,54,55] | |
Final layer | Analyte layer | 1.448 | [31,32] |
Cancer Type | Cell Specifications | Concentrations | |
---|---|---|---|
Skin | Healthy basal cell | (30–70%) | 1.360 |
Cancerous basal cell | 80% | 1.380 | |
Cervical | Healthy HeLa cell | (30–70%) | 1.368 |
Cancerous HeLa cell | 80% | 1.392 | |
Blood | Healthy Jurkat cell | (30–70%) | 1.376 |
Cancerous Jurkat cell | 80% | 1.390 | |
Adrenal gland | Healthy PC12 cell | (30–70%) | 1.381 |
Cancerous PC12 cell | 80% | 1.395 | |
Breast | Healthy MDA-MB-231 cell | (30–70%) | 1.385 |
Cancerous MDA-MB-231 cell | 80% | 1.399 | |
Breast | Healthy MCF-7 cell | (30–70%) | 1.387 |
Cancerous MCF-7 cell | 80% | 1.401 |
Biosensor Structures | Skin Basal Cancer Detection (deg/RIU) | Cervical HeLa Cancer Detection (deg/RIU) | Blood Jurkat Cancer Detection (deg/RIU) | Adrenal Gland PC12 Cancer Detection (deg/RIU) | Breast MDA-MB-231 Cancer Detection (deg/RIU) | Breast MCF-7 Cancer Detection (deg/RIU) |
---|---|---|---|---|---|---|
Only Au layer (BK7/Au(50 nm)/analyte) | 195 | 229.1667 | 242.8571 | 257.1429 | 292.8571 | 307.1429 |
Only Au/Graphene layer (BK7/Au(50 nm)/graphene/analyte) | 205.0000 | 237.5000 | 250.0000 | 271.4286 | 285.7143 | 285.7143 |
Proposed TiO2/Au/graphene (BK7/TiO2/Au(50 nm)/graphene/analyte) | 210.0000 | 245.833 | 264.2857 | 285.7143 | 292.8571 | 278.57 |
Biosensor Structure Gold (Au) Thickness | Skin Basal Cancer Detection (deg/RIU) | Cervical HeLa Cancer Detection (deg/RIU) | Blood Jurkat Cancer Detection (deg/RIU) | Adrenal Gland PC12 Cancer Detection (deg/RIU) | Breast MDA-MB-231 Cancer Detection (deg/RIU) | Breast MCF-7 Cancer Detection (deg/RIU) |
---|---|---|---|---|---|---|
45 nm | 200.0000 | 233.3333 | 250.0000 | 271.4286 | 285.7143 | 292.8571 |
50 nm | 210.0000 | 245.8333 | 264.2857 | 285.7143 | 292.8571 | 278.57 |
55 nm | 215.0000 | 254.1667 | 264.2857 | 285.7143 | 271.4286 | 250.0000 |
Biosensor Structure Graphene Layer No. (L) | Skin Basal Cancer Detection (deg/RIU) | Cervical HeLa Cancer Detection (deg/RIU) | Blood Jurkat Cancer Detection (deg/RIU) | Adrenal Gland PC12 Cancer Detection (deg/RIU) | Breast MDA-MB-231 Cancer Detection (deg/RIU) | Breast MCF-7 Cancer Detection (deg/RIU) |
---|---|---|---|---|---|---|
1 | 210.0000 | 245.8333 | 264.2857 | 285.7143 | 292.8571 | 278.57 |
2 | 220.0000 | 250.0000 | 257.1429 | 264.2857 | 242.8571 | 207.1429 |
3 | 220.0000 | 237.5000 | 250.0000 | 221.4286 | 178.5714 | 142.8571 |
Cancer Type | Cell Name | Refractive Index Change | SPR | Reflectance Intensity (%) | Reflectance Intensity Change (%) | Sensitivity (deg/RIU) | |
---|---|---|---|---|---|---|---|
Skin | Healthy basal cell | Ref | 75.6 | Ref | 5.684 | Ref | Ref |
Cancerous basal cell | 0.02 | 79.8 | 4.2 | 12.17 | 6.486 | 210 | |
Cervical | Healthy HeLa cell | Ref | 77.1 | Ref | 7.636 | Ref | Ref |
Cancerous HeLa cell | 0.024 | 83 | 5.9 | 25.08 | 17.44 | 245.83 | |
Blood | Healthy Jurkat cell | Ref | 78.8 | Ref | 10.29 | Ref | Ref |
Cancerous Jurkat cell | 0.014 | 82.5 | 3.7 | 21.66 | 11.37 | 264.2857 | |
Adrenal gland | Healthy PC12 cell | Ref | 80 | Ref | 12.75 | Ref | Ref |
Cancerous PC12 cell | 0.014 | 84 | 4 | 31.79 | 19.04 | 285.7143 | |
Breast | Healthy MDA-MB-231 cell | Ref | 81 | Ref | 15.72 | Ref | Ref |
Cancerous MDA-MB-231 cell | 0.014 | 85.1 | 4.1 | 44.35 | 28.63 | 292.857 | |
Breast | Healthy MCF-7 cell | Ref | 81.6 | Ref | 17.71 | Ref | Ref |
Cancerous MCF-7 cell | 0.014 | 85.4 | 3.9 | 52.06 | 34.35 | 278.57 |
Reference | Reported Year | Model Structures | Angular Sensitivity | DA (Deg−1) | FOM (RIU−1) | SNR |
---|---|---|---|---|---|---|
[84] | 2020 | SF11/Au/MoS2/graphene | 130 | - | 17.02 | - |
[85] | 2020 | SF11/Au/MoS2/WS2/WSe2 | 142 | - | - | - |
[86] | 2020 | BK7/Au/WSe2/graphene | 178.87 | - | 27.86 | - |
[46] | 2020 | Prism/Ag/PtSe2/WS2 | 194 | - | 17.64 | - |
[71] | 2022 | BK7/Au/WSe2/PtSe2/BP | 200 | 0.088 | 17.70 | - |
[87] | 2021 | BK7/ZnO/Si/MXene/sensing | 231 | 0.17 | - | - |
[69] | 2019 | Trilayers of graphene | 121.67 | - | - | 2.21 |
[69] | 2019 | Six MoS2 and mono graphene | 200 | - | - | 0.7692 |
[88] | 2021 | MoS2-graphene hybrid | 130 | - | - | 1.37 |
[89] | 2022 | BK7/Au/GeS | 260 | 0.143 | 33.4 | - |
[85] | 2022 | Bk7 Prism/Ti/Ag/MoS2/graphene | 144.72 | - | - | - |
[86] | 2022 | SiO2/Au/Ga-doped ZnO/MXene | 264.59 | 0.115 | 30.48 | - |
Our work | 2022 | BK7/TiO2/Au/graphene | 292.857 | 0.263 | 48.02 | 3.84 |
Measured Magnitude | Sensitivity Definition | Enhancement Mechanism | Wavelength (nm) | Sensitivity | Ref |
---|---|---|---|---|---|
Reflected Intensity | (1/RIU) | LSPR cytop/Au/TMDCs | 633 | 500 | [92] |
MoS2-based | 1540 | 970 | [93] | ||
Graphene/Ag | 1000 | 455 | [94] | ||
Resonance Wavelength | (nm/RIU) | Gold on SF11 | 700 | 2750 | [95] |
Long-range SPR | 700 | 30,000 | [96] | ||
Long-range SPR optimized | 830 | 570,000 | [97] | ||
Resonance Angle | (deg/RIU) | TiO2/Au/graphene | 633 | 292.857 | Our model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostufa, S.; Akib, T.B.A.; Rana, M.M.; Islam, M.R. Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. Biosensors 2022, 12, 603. https://doi.org/10.3390/bios12080603
Mostufa S, Akib TBA, Rana MM, Islam MR. Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. Biosensors. 2022; 12(8):603. https://doi.org/10.3390/bios12080603
Chicago/Turabian StyleMostufa, Shahriar, Tarik Bin Abdul Akib, Md. Masud Rana, and Md. Rabiul Islam. 2022. "Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection" Biosensors 12, no. 8: 603. https://doi.org/10.3390/bios12080603
APA StyleMostufa, S., Akib, T. B. A., Rana, M. M., & Islam, M. R. (2022). Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. Biosensors, 12(8), 603. https://doi.org/10.3390/bios12080603