A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparations of RBCs and Antibody-Coated Slides
2.2. Optical Tweezers for Tearing off an RBC
2.3. Verification of Antibody-Antigen Interactions
2.4. Antibody Dilution Regulation
3. Results
Preliminary Assay of Cell-Binding
4. Discussions
4.1. Binding Phenomenon between a Cell and the Functionalized Surface
4.2. Estimation of the Variation in Cell Surface Antigens
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varady, G.; Cserepes, J.; Németh, A.; Szabó, E.; Sarkadi, B. Cell surface membrane proteins as personalized biomarkers: Where we stand and where we are headed. Biomark Med. 2013, 7, 803–819. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M. Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochim. Biophys. Acta 1985, 780, 119–150. [Google Scholar] [CrossRef]
- Banuls, M.P.; Alvarez, A.; Ferrero, I.; Zapata, A.; Ardavin, C. Cell-surface marker analysis of rat thymic dendritic cells. Immunology 1993, 79, 298–304. [Google Scholar]
- Takaishi, S.; Okumura, T.; Tu, S.; Wang, S.S.W.; Shibata, W.; Vigneshwaran, R.; Gordon, S.A.K.; Shimada, Y.; Wang, T.C. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009, 27, 1006–1020. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.L.; Clausen, H. Modifying the red cell surface: Towards an ABO-universal blood supply. Br. J. Haematol 2008, 140, 3–12. [Google Scholar] [CrossRef]
- Springer, T.A. Adhesion receptors of the immune system. Nature 1990, 346, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Sleeman, J.P.; Kim, U.; LePendu, I.; Howells, N.; Coquerelle, T.; Ponta, H.; Herrlich, P. Inhibition of MT-450 rat mammary tumour growth by antibodies recognising subtypes of blood group antigen B. Oncogene 1999, 18, 4485–4494. [Google Scholar] [CrossRef]
- Nakagoe, T.; Nanashima, A.; Sawai, T.; Tuji, T.; Ohbatake, M.; Jibiki, M.; Yamaguchi, H.; Yasutake, T.; Ayabe, H.; Matuo, T. Expression of blood group antigens A; B and H in carcinoma tissue correlates with a poor prognosis for colorectal cancer patients. J. Cancer Res. Clin. Oncol. 2000, 126, 375–382. [Google Scholar] [CrossRef]
- Moldvay, J.; Scheid, P.; Wild, P.; Nabil, K.; Siat, J.; Borrelly, J.; Marie, B.; Farré, G.; Labib, T.; Pottier, G. Predictive survival markers in patients with surgically resected non-small cell lung carcinoma. Clin Cancer Res. 2000, 6, 1125–1134. [Google Scholar]
- Cho, D.; Shin, D.J.; Yazer, M.H.; Ihm, C.H.; Hur, Y.M.; Kee, S.J.; Kim, S.H.; Shin, M.G.; Shin, J.H.; Suh, S.P.; et al. The M142T mutation causes B3 phenotype: Three cases and an in vitro expression study. Korean J. Lab. Med. 2010, 30, 65–69. [Google Scholar]
- Chen, D.P.; Tseng, C.P.; Wang, W.T.; Sun, C.F. Genetic and mechanistic evaluation for the mixed-field agglutination in B3 blood type with IVS3+5G. A ABO gene mutation. PLoS ONE 2012, 7, e37272. [Google Scholar] [CrossRef] [PubMed]
- San, R.; Nakajima, T.; Takahashi, Y.; Kubo, R.; Kobayashi, M.; Takahashi, K.; Takeshita, H.; Ogasawara, K.; Kominato, Y. Epithelial expression of human ABO blood group genes is dependent upon a downstream regulatory element functioning through an epithelial cell-specific transcription factor, Elf5. J. Biol. Chem. 2016, 291, 2294–22606. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Qian, C.; Wu, W.; Lei, H.; Ding, Q.; Zou, W.; Xiang, D.; Wang, X. An exonic missense mutation c.28G>A is associated with weak B blood group by affecting RNA splicing of the ABO gene. Transfusion 2017, 57, 2140–2149. [Google Scholar] [CrossRef] [PubMed]
- Sano, R.; Takahashi, Y.; Fukuda, H.; Harada, M.; Hayakawa, A.; Okawa, T.; Kubo, R.; Takeshita, H.; Tsukada, J.; Kominato, Y. A cell-specific regulatory region of the human ABO blood group gene regulates the neighborhood gene encoding odorant bonding protein 2B. Sci. Rep. 2021, 11, 7325. [Google Scholar] [CrossRef]
- Mori, T.; Katayama, Y. Signal amplification in flow cytometry for cell surface antigen analysis. J. Biochem. 2019, 166, 205–212. [Google Scholar] [CrossRef]
- Arunachalam, B.; Talwar, G.P.; Raghupathy, R. A simplified cellular ELISA (CELISA) for the detection of antibodies reacting with cell-surface antigens. J. Immunol. Method. 1990, 135, 181–189. [Google Scholar] [CrossRef]
- Efros, R.B.; Zeller, E.; Dillard, L.; Walford, R.L. Detection of antibodies to cell surface antigens by a simplified cellular ELISA (CELISA). Tissue Antigens 1985, 25, 204–211. [Google Scholar] [CrossRef]
- Svoboda, K.; Block, S.M. Force and velocity measured for single kinesin molecules. Cell 1994, 77, 773–784. [Google Scholar] [CrossRef]
- Neuman, K.C.; Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5, 491–505. [Google Scholar] [CrossRef]
- Ros, R.; Schwesinger, F.; Anselmetti, D.; Kubon, M.; Schäfer, R. Antigen bonding forces of individually addressed single-chain Fv antibody molecules. Proc. Natl. Acad. Sci. USA 1998, 95, 7402–7405. [Google Scholar] [CrossRef]
- Uchihashi, T.; Watanabe, H.; Fukuda, S.; Shibata, M.; Ando, T. Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy 2016, 160, 182–196. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 1987, 330, 769–771. [Google Scholar] [CrossRef]
- Corsettia, S.; Dholakia, K. Optical manipulation advances for biophotonics in the 21st century. J. Biomed. Opt. 2021, 26, 070602. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, K.-K. Optical tweezers for single cells. J. R. Soc. Interface 2008, 5, 671–690. [Google Scholar] [CrossRef]
- Crick, A.J.; Theron, M.; Tiffert, T.; Lew, V.L.; Cicuta, P.; Rayner, J.C. Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys. J. 2014, 107, 846–853. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, H.-W.; Yu, P.-P.; Zhang, S.-H.; Zhou, J.-H.; Li, Y.-M.; Gong, L. Trapping and manipulation of single cells in crowded environments. Front. Bioeng. Biotechnol. 2020, 8, 422. [Google Scholar] [CrossRef]
- Ortiz-Rivero, E.; Prorok, K.; Skowicki, M.; Lu, D.; Bednarkiewicz, A.; Jaque, D.; Haro-González, P. Single-cell biodetection by upconverting microspinners. Small 2019, 15, 1904154. [Google Scholar] [CrossRef]
- Keloth, A.; Anderson, O.; Risbridger, D.; Paterson, L. Single cell isolation using optical tweezers. Micromachines 2018, 9, 434. [Google Scholar] [CrossRef]
- Grexa, I.; Fekete, T.; Molnár, J.; Molnár, K.; Vizsnyiczai, G.; Ormos, P.; Kelemen, L. Single-cell elasticity measurement with an optically actuated microrobot. Micromachines 2020, 11, 882. [Google Scholar] [CrossRef]
- Fang, T.; Shang, W.; Liu, C.; Liu, Y.; Ye, A. A single-cell multimodal analytical approach by integrating Raman optical tweezers and RNA sequencing. Anal. Chem. 2020, 92, 10433–10441. [Google Scholar] [CrossRef]
- Fekete, T.; Mészáros, M.; Szeglets, Z.; Vizsnyiczai, G.; Zimányi, L.; Deli, M.A.; Veszelka, S.; Kelemen, L. Optically manipulated microtools to measure adhesion of the nanoparticle-targeting Ligand Glutathione to Brain Endothelial cells. ACS Appl. Mater. Interfaces 2021, 13, 39018–39029. [Google Scholar] [CrossRef]
- Lee, K.; Shirshin, E.; Rovnyagina, N.; Yaya, F.; Boujja, Z.; Priezzhev, A.; Wagner, C. Dextran adsorption onto red blood cells revisited: Single cell quantification by laser tweezers combined with microfluidics. Biomed. Opt. Express 2018, 9, 2755–2764. [Google Scholar] [CrossRef]
- Zhu, R.; Avsievich, T.; Popov, A.; Meglinski, I. Optical tweezers in studies of red blood cells. Cells 2020, 9, 545. [Google Scholar] [CrossRef]
- Yang, B.W.; Mu, Y.H.; Huang, K.T.; Li, Z.; Wu, J.L.; Lin, Y.A. The evaluation of interaction between red blood cells in blood coagulation by optical tweezers. Blood Coagul. Fibrinolysis 2010, 21, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kinnunen, M.; Khokhlova, M.D.; Lyubin, E.V.; Priezzhev, A.V.; Meglinskim, I.; Fedyanin, A.A. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions. J. Biomed. Opt. 2016, 21, 035001. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Lin, T.H.; Yang, C.Y.; Kuo, Y.W.; Lei, U. Mechanics for the adhesion and aggregation of red blood cells on chitosan. J. Mech. 2018, 34, 725–732. [Google Scholar] [CrossRef]
- Ermolinskiy, P.; Lugovtsov, A.; Yaya, F.; Lee, K.; Kaestner, L.; Wagner, C.; Priezzhev, A. Effect of red blood cell aging in vivo on their aggregation properties in vitro: Measurements with laser tweezers. Appl. Sci. 2020, 10, 7581. [Google Scholar] [CrossRef]
- Agrawal, R.; Smart, T.; Nobre-Cardoso, J.; Richards, C.; Bhatnagar, R.; Tufail, A.; Shima, D.; Jones, P.H.; Pavesio, C. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci. Rep. 2016, 6, 15873. [Google Scholar] [CrossRef]
- Jing, P.; Liu, Y.; Keeler, E.G.; Cruz, N.M.; Freedman, B.S.; Lin, Y.L. Optical tweezers system for live stem cell organization at the single-cell level. Biomed. Opt. Express 2018, 9, 771–779. [Google Scholar] [CrossRef]
- Shakoor, A.; Wang, B.; Fan, L.; Kong, L.; Gao, W.; Sun, J.; Man, K.; Li, G.; Sun, D. Automated optical tweezers manipulation to transfer mitochondria from fetal to adult MSCs to improve antiaging gene expressions. Small 2021, 17, 2103086. [Google Scholar] [CrossRef]
- Wang, H.; Enders, A.; Preuss, J.A.; Bahnemann, J.; Heisterkamp, A.; Torres-Mapa, M.L. 3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation. Sci. Rep. 2021, 11, 14584. [Google Scholar] [CrossRef]
- Cartron, J.P.; Gerbal, A.; Hughes–Jones, N.C.; Salmon, C. ‘Weak A’ phenotypes: Relationship between red cell agglutinability and antigen site density. Immunology 1974, 27, 723–727. [Google Scholar]
- Hosoi, E. Biological and clinical aspects of ABO blood group system. J. Med. Investig. 2008, 55, 174–182. [Google Scholar] [CrossRef]
- Mazia, D.; Schatten, G.; Sale, W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J. Cell Biol. 1975, 66, 198–200. [Google Scholar] [CrossRef]
- Huang, W.M.; Gibson, S.J.; Facer, P.G.U.J.; Gu, J.; Polak, J.M. Improved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating. Histochemistry 1983, 77, 275–279. [Google Scholar] [CrossRef]
- Seurynck-Servoss, S.L.; White, A.M.; Baird, C.L.; Rodland, K.D.; Zangar, R.C. Evaluation of surface chemistries for antibody microarrays. Anal. Biochem. 2007, 371, 105–115. [Google Scholar] [CrossRef]
- Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 1992, 61, 569–582. [Google Scholar] [CrossRef]
- Singer, W.; Bernet, S.; Hecker, N.; Ritsch-Marte, M. Three-dimensional force calibration of optical tweezers. J. Mod. Opt. 2000, 47, 2921–2931. [Google Scholar] [CrossRef]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Wright, W.H.; Sonek, G.J.; Berns, M.W. Parametric study of the forces on microspheres held by optical tweezers. Appl. Opt. 1994, 33, 1735–1748. [Google Scholar] [CrossRef]
- Sautner, É.; Papp, K.; Holczer, E.; Tóth, E.L.; Ungai-Salánki, R.; Szabó, B.; Fürjes, P.; Prechl, J. Detection of red blood cell surface antigens by probe-triggered cell collision and flow retardation in an autonomous microfluidic system. Sci. Rep. 2017, 7, 1008. [Google Scholar] [CrossRef]
RBC Groups | Anti-A Surface | Anti-B Surface |
---|---|---|
A | ○ | × |
B | × | ○ |
O | × | × |
Antibody Dilution Fold | Group B Cells | Group B3 Cells |
---|---|---|
1, 2, 4,…, 256 | ○ | ○ |
512 | ○ | ○ |
1024 | ○ | × |
2048 | ○ | (Terminated) |
2560 | ○ | |
3072 | ○ | |
3584 | ○ | |
4096 | ○ | |
4608 | ○ | |
5120 | × | |
(Terminated) |
Group B Cells | Group B3 Cells | ||
---|---|---|---|
Antibody Dilution Fold | Power for Confirming Binding (mW) | Antibody Dilution Fold | Power for Confirming Binding (mW) |
5120 | 145 | 1024 | 10 |
5632 | 25 | 1536 | 8 |
6144 | 10 | 2048 | 6 |
6656 | 8 | 2560 | 5 |
6912 | 6 | (Terminated) | |
7168 | 5 | ||
(Terminated) |
Antibody Dilution Fold | Group B Cells in Anti-B Antibody Solution | Group B3 Cells inAnti-B Antibody Solution |
---|---|---|
1 | + | + |
2 | + | + |
4 | + | + |
6 | + | + |
8 | + | + |
16 | + | + |
32 | + | + |
64 | + | + |
128 | + | + |
256 | + | − |
512 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-L.; Wang, S.-G.; Tien, M.-T.; Chiang, C.-H.; Lee, Y.-C.; Baldeck, P.L.; Shin, C.-S. A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers. Biosensors 2022, 12, 656. https://doi.org/10.3390/bios12080656
Lin C-L, Wang S-G, Tien M-T, Chiang C-H, Lee Y-C, Baldeck PL, Shin C-S. A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers. Biosensors. 2022; 12(8):656. https://doi.org/10.3390/bios12080656
Chicago/Turabian StyleLin, Chih-Lang, Shyang-Guang Wang, Meng-Tsung Tien, Chung-Han Chiang, Yi-Chieh Lee, Patrice L. Baldeck, and Chow-Shing Shin. 2022. "A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers" Biosensors 12, no. 8: 656. https://doi.org/10.3390/bios12080656
APA StyleLin, C. -L., Wang, S. -G., Tien, M. -T., Chiang, C. -H., Lee, Y. -C., Baldeck, P. L., & Shin, C. -S. (2022). A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers. Biosensors, 12(8), 656. https://doi.org/10.3390/bios12080656